Rhamnolipid-biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. 2008

A V Sotirova, and D I Spasova, and D N Galabova, and E Karpenko, and A Shulga
Department of Microbial Biochemistry and Biosynthesis, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.

The potential of biosurfactant PS to permeabilize bacterial cells of Pseudomonas aeruginosa, Escherichia coli, and Bacillus subtilis on growing (in vivo) and resting (in vitro) cells was studied. Biosurfactant was shown to have a neutral or detrimental effect on the growth of Gram-positive strains, and this was dependent on the surfactant concentration. The growth of Gram-negative strains was not influenced by the presence of biosurfactant in the media. Cell permeabilization with biosurfactant PS was shown to be more effective with B. subtilis resting cells than with Pseudomonas aeruginosa. Scanning-electron microscopy observations showed that the biosurfactant PS did not exert a disruptive action on resting cells such that it was detrimental to the effect on growing cells of B. subtilis. Low critical micelle concentrations, tender action on nongrowing cells, and neutral effects on the growth of microbial strains at low surfactant concentrations make biosurfactant PS a potential candidate for application in different industrial fields, in environmental bioremediation, and in biomedicine.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D006017 Glycolipids Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage) Glycolipid
D006603 Hexuronic Acids Term used to designate tetrahydroxy aldehydic acids obtained by oxidation of hexose sugars, i.e. glucuronic acid, galacturonic acid, etc. Historically, the name hexuronic acid was originally given to ascorbic acid. Hexouronic Acids,Acids, Hexouronic,Acids, Hexuronic
D000464 Alginates Salts and esters of ALGINIC ACID that are used as HYDROGELS; DENTAL IMPRESSION MATERIALS, and as absorbent materials for surgical dressings (BANDAGES, HYDROCOLLOID). They are also used to manufacture MICROSPHERES and NANOPARTICLES for DIAGNOSTIC REAGENT KITS and DRUG DELIVERY SYSTEMS. Alginate,Alginic Acid, Barium Salt,Alginic Acid, Calcium Salt,Alginic Acid, Copper Salt,Alginic Acid, Potassium Salt,Alginic Acid, Sodium Salt,Alloid G,Barium Alginate,Calcium Alginate,Calginat,Copper Alginate,Kalrostat,Kalrostat 2,Kaltostat,Potassium Alginate,Sodium Alginate,Sodium Calcium Alginate,Vocoloid,Xantalgin,poly(Mannuronic Acid), Sodium Salt,Alginate, Barium,Alginate, Calcium,Alginate, Copper,Alginate, Potassium,Alginate, Sodium,Alginate, Sodium Calcium,Calcium Alginate, Sodium
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D012988 Soil Microbiology The presence of bacteria, viruses, and fungi in the soil. This term is not restricted to pathogenic organisms. Microbiology, Soil
D013501 Surface-Active Agents Agents that modify interfacial tension of water; usually substances that have one lipophilic and one hydrophilic group in the molecule; includes soaps, detergents, emulsifiers, dispersing and wetting agents, and several groups of antiseptics. Surface Active Agent,Surface-Active Agent,Surfactant,Surfactants,Tenside,Amphiphilic Agents,Surface Active Agents,Tensides,Active Agent, Surface,Active Agents, Surface,Agent, Surface Active,Agent, Surface-Active,Agents, Amphiphilic,Agents, Surface Active,Agents, Surface-Active
D020723 Glucuronic Acid A sugar acid formed by the oxidation of the C-6 carbon of GLUCOSE. In addition to being a key intermediate metabolite of the uronic acid pathway, glucuronic acid also plays a role in the detoxification of certain drugs and toxins by conjugating with them to form GLUCURONIDES. Glucuronate,Glucuronic Acid, 6-(14)C-labeled, (D)-isomer,Glucuronic Acid, Monopotassium Salt,Glucuronic Acid, Monosodium Salt,Monopotassium Glucuronate,Monosodium Glucuronate,Glucuronate, Monopotassium,Glucuronate, Monosodium

Related Publications

A V Sotirova, and D I Spasova, and D N Galabova, and E Karpenko, and A Shulga
January 1977, Giornale italiano di chemioterapia,
A V Sotirova, and D I Spasova, and D N Galabova, and E Karpenko, and A Shulga
October 2001, Letters in applied microbiology,
A V Sotirova, and D I Spasova, and D N Galabova, and E Karpenko, and A Shulga
May 2018, Microbial pathogenesis,
A V Sotirova, and D I Spasova, and D N Galabova, and E Karpenko, and A Shulga
July 2023, International immunopharmacology,
A V Sotirova, and D I Spasova, and D N Galabova, and E Karpenko, and A Shulga
April 2015, Seminars in cell & developmental biology,
A V Sotirova, and D I Spasova, and D N Galabova, and E Karpenko, and A Shulga
November 2017, Journal of nanobiotechnology,
A V Sotirova, and D I Spasova, and D N Galabova, and E Karpenko, and A Shulga
January 1986, Experimental biology,
A V Sotirova, and D I Spasova, and D N Galabova, and E Karpenko, and A Shulga
July 2020, ACS omega,
A V Sotirova, and D I Spasova, and D N Galabova, and E Karpenko, and A Shulga
January 1976, Archiv fur experimentelle Veterinarmedizin,
A V Sotirova, and D I Spasova, and D N Galabova, and E Karpenko, and A Shulga
January 1969, Giornale italiano di chemioterapia,
Copied contents to your clipboard!