Mouse T lymphocyte response to acetylcholine receptor determined by T cell receptor for antigen V beta gene products recognizing Mls-1a. 1991

C J Krco, and C S David, and V A Lennon
Department of Immunology, Mayo Clinic, Rochester, MN 55905.

Mice of strain B6, but not AKR/J, respond to immunization with Torpedo acetylcholine receptor (AChR) by manifesting in vitro an Ag-specific T lymphocyte proliferative response. Our analysis of (AKR x B6)F1 mice reveals that the T cell unresponsiveness of AKR/J is inherited as a dominant trait, possibly associated with expression of the Mls-1a allele. Mice derived from backcrossing (AKR x B6)F1 x B6 were selected for H-2b homozygosity and were classified as Mls-1a or Mls-1b according to the relative numbers of peripheral blood T cells that expressed the TCR V beta 6 gene product. After challenge by injection with AChR in CFA, lymph node cells from mice classified as having less than 2% of V beta 6+ peripheral T cells had low responsiveness to AChR, whereas mice with greater than 7% V beta 6+ peripheral T cells had high T cell responsiveness to AChR. These results are consistent with the notion that regulation of the T cell repertoire by Mls loci may be a determinant of susceptibility to autoimmunity.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008806 Mice, Inbred AKR An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mice, AKR,Mouse, AKR,Mouse, Inbred AKR,AKR Mice,AKR Mice, Inbred,AKR Mouse,AKR Mouse, Inbred,Inbred AKR Mice,Inbred AKR Mouse
D009157 Myasthenia Gravis A disorder of neuromuscular transmission characterized by fatigable weakness of cranial and skeletal muscles with elevated titers of ACETYLCHOLINE RECEPTORS or muscle-specific receptor tyrosine kinase (MuSK) autoantibodies. Clinical manifestations may include ocular muscle weakness (fluctuating, asymmetric, external ophthalmoplegia; diplopia; ptosis; and weakness of eye closure) and extraocular fatigable weakness of facial, bulbar, respiratory, and proximal limb muscles. The disease may remain limited to the ocular muscles (ocular myasthenia). THYMOMA is commonly associated with this condition. Anti-MuSK Myasthenia Gravis,MuSK MG,MuSK Myasthenia Gravis,Muscle-Specific Receptor Tyrosine Kinase Myasthenia Gravis,Muscle-Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis,Myasthenia Gravis, Generalized,Myasthenia Gravis, Ocular,Anti MuSK Myasthenia Gravis,Generalized Myasthenia Gravis,Muscle Specific Receptor Tyrosine Kinase Myasthenia Gravis,Muscle Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis,Myasthenia Gravis, Anti-MuSK,Myasthenia Gravis, MuSK,Ocular Myasthenia Gravis
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D016693 Receptors, Antigen, T-Cell, alpha-beta T-cell receptors composed of CD3-associated alpha and beta polypeptide chains and expressed primarily in CD4+ or CD8+ T-cells. Unlike immunoglobulins, the alpha-beta T-cell receptors recognize antigens only when presented in association with major histocompatibility (MHC) molecules. Antigen Receptors, T-Cell, alpha-beta,T-Cell Receptors alpha-Chain,T-Cell Receptors beta-Chain,T-Cell Receptors, alpha-beta,TcR alpha-beta,Antigen T Cell Receptor, alpha Chain,Antigen T Cell Receptor, beta Chain,Receptors, Antigen, T Cell, alpha beta,T Cell Receptors, alpha beta,T-Cell Receptor alpha-Chain,T-Cell Receptor beta-Chain,T-Cell Receptor, alpha-beta,T Cell Receptor alpha Chain,T Cell Receptor beta Chain,T Cell Receptor, alpha beta,T Cell Receptors alpha Chain,T Cell Receptors beta Chain,TcR alpha beta,alpha-Chain, T-Cell Receptor,alpha-Chain, T-Cell Receptors,alpha-beta T-Cell Receptor,alpha-beta T-Cell Receptors,alpha-beta, TcR,beta-Chain, T-Cell Receptor,beta-Chain, T-Cell Receptors
D016747 Minor Lymphocyte Stimulatory Antigens Endogenous superantigens responsible for inducing strong proliferative responses in T-cells in mixed lymphocyte reactions (see LYMPHOCYTE CULTURE TEST, MIXED). They are encoded by mouse mammary tumor viruses that have integrated into the germ line as DNA proviruses (MINOR LYMPHOCYTE STIMULATORY LOCI). Antigens, Minor Lymphocyte Stimulatory,Lymphocyte Stimulatory Antigens, Minor,Lymphocyte-Activating Determinants,Minor Lymphocyte Stimulatory Determinants,Mls Antigens,Mls Determinants,Minor Lymphocyte-Stimulating Antigens,Minor Lymphocyte-Stimulating Determinants,Antigens, Minor Lymphocyte-Stimulating,Antigens, Mls,Determinants, Lymphocyte-Activating,Determinants, Minor Lymphocyte-Stimulating,Determinants, Mls,Lymphocyte Activating Determinants,Lymphocyte-Stimulating Antigens, Minor,Lymphocyte-Stimulating Determinants, Minor,Minor Lymphocyte Stimulating Antigens,Minor Lymphocyte Stimulating Determinants
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

C J Krco, and C S David, and V A Lennon
April 1989, Cellular immunology,
C J Krco, and C S David, and V A Lennon
August 1989, Proceedings of the National Academy of Sciences of the United States of America,
C J Krco, and C S David, and V A Lennon
February 1992, International immunology,
C J Krco, and C S David, and V A Lennon
May 1991, The Journal of experimental medicine,
C J Krco, and C S David, and V A Lennon
January 1989, Annual review of immunology,
C J Krco, and C S David, and V A Lennon
August 1991, Journal of immunology (Baltimore, Md. : 1950),
C J Krco, and C S David, and V A Lennon
July 1994, European journal of immunology,
C J Krco, and C S David, and V A Lennon
November 1993, The Journal of experimental medicine,
C J Krco, and C S David, and V A Lennon
January 1991, Advances in experimental medicine and biology,
Copied contents to your clipboard!