Nerve growth factor stimulation of GAP-43 phosphorylation in intact isolated growth cones. 1991

K F Meiri, and D Burdick
Department of Pharmacology, SUNY Health Science Center, Syracuse 13210.

Phosphorylation of the nervous system-specific growth cone protein GAP-43 by kinase C in vivo occurs exclusively in growth cones and distal axons, and the onset of this phosphorylation is delayed relative to the onset of axonogenesis, with the delay predicted on the time needed for axons to reach the vicinity of their targets (Meiri et al., 1991). We have used a subcellular fraction of intact growth cones (IGCs) to investigate whether this induction of GAP-43 phosphorylation can be influenced by target-derived substances, and show here that increased phosphorylation of GAP-43 can be both stimulated and maintained by NGF at concentrations of 2 x 10(-10) M. This low concentration of NGF and the subsequent phosphorylation of GAP-43 are both consistent with the interpretation that phosphorylation is due to the binding of NGF to a biologically active high-affinity receptor. Second, we used the monoclonal antibody 2G12 to show that the NGF-stimulated phosphorylation of GAP-43 occurs on serine, the kinase C phosphorylation site, consistent with the results seen in vivo. Levels of phosphorylated GAP-43 in the intact IGCs are also modulated by calcium-stimulated dephosphorylation that could be inhibited by EGTA but not okadaic acid and that therefore resembled the calcineurin-stimulated dephosphorylation reported in vitro. The results suggest that the spatial and temporal regulation of GAP-43 phosphorylation that occurs during axonogenesis in vivo can be regulated by target-derived neurotropic molecules, specifically NGF.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K F Meiri, and D Burdick
October 1992, Journal of neurobiology,
K F Meiri, and D Burdick
December 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K F Meiri, and D Burdick
November 1997, Journal of neurochemistry,
K F Meiri, and D Burdick
November 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K F Meiri, and D Burdick
September 1997, Pediatric neurosurgery,
K F Meiri, and D Burdick
June 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K F Meiri, and D Burdick
November 2004, Journal of neurobiology,
Copied contents to your clipboard!