Acute effects of calvarial damage on dural mast cells, pial vascular permeability, and cerebral cortical histamine levels in rats and mice. 2008

Martha E Stokely, and Edward L Orr
Department of Pharmacology and Neuroscience, and North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA.

Neurological complications after mild head injury can include vasogenic edema and/or subsequent development of epilepsy, conditions associated with elevated histamine. In the present study we assessed the potential of mast cells located in the dura mater to contribute to elevated cortical histamine and breakdown of the blood-brain barrier after minor head injury, modeled by either a parietal craniectomy or producing a groove in (scoring) the parietal bone surface to model a grazing head injury. We measured the following effects at 5-20 min after a unilateral parietal craniectomy (rats) or unilateral scoring of the parietal bone (mice): (1) mast cell integrity in subjacent dura mater; (2) subjacent vs. contralateral histamine in dura mater and cerebral cortex; (3) vascular permeability of cerebral cortical blood vessels subjacent to the injury, and; (4) the effects of an H(2)-receptor antagonist on cerebral cortical vascular permeability. RESULTS Dural mast cells subjacent to the craniectomy became activated (degranulated) concomitant with (1) decreased histamine in dura mater subjacent to the craniectomy; (2) increased histamine in the subjacent cerebral cortex; and (3) extravasation of Evans blue-albumin which stained the subjacent cerebral cortex, indicating a localized breakdown of the blood-brain barrier. Similar results were observed in mice after scoring the parietal bone surface and, additionally, pretreatment with the histamine H(2)-receptor antagonist zolantadine (1 h before injury) dose-dependently inhibited extravasation of Evans blue-albumin. We conclude that even a minor grazing injury of the skull, in the absence of penetrating brain injury or concussion, can activate dural mast cells and elevate cortical histamine, a novel mechanism with potential contributions to neurotraumatic complications arising from a relatively minor or grazing head wound.

UI MeSH Term Description Entries
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D010841 Pia Mater The innermost layer of the three meninges covering the brain and spinal cord. It is the fine vascular membrane that lies under the ARACHNOID and the DURA MATER. Mater, Pia,Maters, Pia,Pia Maters
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D003399 Craniotomy Surgical incision into the cranium. Craniectomy,Craniectomies,Craniotomies
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal

Related Publications

Martha E Stokely, and Edward L Orr
November 1984, Journal of neurochemistry,
Martha E Stokely, and Edward L Orr
June 1994, Agents and actions,
Martha E Stokely, and Edward L Orr
November 2003, International immunopharmacology,
Martha E Stokely, and Edward L Orr
March 2018, Annals of neurology,
Martha E Stokely, and Edward L Orr
April 1956, The Journal of experimental medicine,
Martha E Stokely, and Edward L Orr
June 1988, Journal of immunology (Baltimore, Md. : 1950),
Martha E Stokely, and Edward L Orr
August 1970, The Journal of pharmacy and pharmacology,
Martha E Stokely, and Edward L Orr
January 1983, Clinical and experimental pharmacology & physiology,
Copied contents to your clipboard!