[Reactive oxygen species, stress and cell death in plants]. 2008

Claire Parent, and Nicolas Capelli, and James Dat
Laboratoire de chrono-environnement, UMR UFC/CNRS 6249 USC Inra, université de Franche-Comté, F-25030 Besançon cedex, France.

Plants are constantly exposed to changes in environmental conditions. During periods of stress, the cellular redox homeostasis is altered as a result of reactive oxygen species accumulation. The change in redox is responsible for the symptoms commonly observed during periods of stress and reflects the phytotoxic nature of oxygen radical accumulation. However, oxygen radicals have recently been identified as key actors in the response to stress and their role as secondary messengers is now clearly established. The identification of their role in gene regulation has allowed one to identify them as key regulators in the induction and execution of programmed cell death typically observed during developmental processes as well as during stress responses. This review presents recent advances in the characterisation of the role of reactive oxygen species in plants.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D004777 Environment The external elements and conditions which surround, influence, and affect the life and development of an organism or population. Environmental Impact,Environmental Impacts,Impact, Environmental,Impacts, Environmental,Environments
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D059828 Plant Cells Basic functional unit of plants. Cell, Plant,Cells, Plant,Plant Cell
D018515 Plant Leaves Expanded structures, usually green, of vascular plants, characteristically consisting of a bladelike expansion attached to a stem, and functioning as the principal organ of photosynthesis and transpiration. (American Heritage Dictionary, 2d ed) Plant Leaf,Leaf, Plant,Leave, Plant,Leaves, Plant,Plant Leave
D018521 Plant Physiological Phenomena The physiological processes, properties, and states characteristic of plants. Plant Physiological Processes,Plant Physiology,Physiology, Plant,Plant Physiologic Phenomena,Plant Physiologic Phenomenon,Plant Physiological Phenomenon,Plant Physiological Process,Phenomena, Plant Physiologic,Phenomena, Plant Physiological,Phenomenon, Plant Physiologic,Phenomenon, Plant Physiological,Phenomenons, Plant Physiological,Physiologic Phenomena, Plant,Physiologic Phenomenon, Plant,Physiological Phenomena, Plant,Physiological Phenomenon, Plant,Physiological Phenomenons, Plant,Physiological Process, Plant,Physiological Processes, Plant,Plant Physiological Phenomenons,Process, Plant Physiological,Processes, Plant Physiological

Related Publications

Claire Parent, and Nicolas Capelli, and James Dat
January 2014, Ukrainian biochemical journal,
Claire Parent, and Nicolas Capelli, and James Dat
October 2020, International journal of molecular sciences,
Claire Parent, and Nicolas Capelli, and James Dat
May 2017, Journal of plant research,
Claire Parent, and Nicolas Capelli, and James Dat
September 2022, International journal of molecular sciences,
Claire Parent, and Nicolas Capelli, and James Dat
June 2022, Antioxidants (Basel, Switzerland),
Claire Parent, and Nicolas Capelli, and James Dat
May 2019, Proceedings of the National Academy of Sciences of the United States of America,
Claire Parent, and Nicolas Capelli, and James Dat
January 2013, Frontiers in plant science,
Claire Parent, and Nicolas Capelli, and James Dat
August 2000, Cellular and molecular neurobiology,
Claire Parent, and Nicolas Capelli, and James Dat
March 1996, Trends in biochemical sciences,
Claire Parent, and Nicolas Capelli, and James Dat
June 2006, Plant physiology,
Copied contents to your clipboard!