A protein tyrosine phosphatase-like inositol polyphosphatase from Selenomonas ruminantium subsp. lactilytica has specificity for the 5-phosphate of myo-inositol hexakisphosphate. 2008

Aaron A Puhl, and Ralf Greiner, and L Brent Selinger
Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4.

Although it is becoming well known that myo-inositol polyphosphates and the enzymes involved in their metabolism play a critical role in eukaryotic systems, little is understood of their significance in prokaryotic systems. A novel protein tyrosine phosphatase (PTP)-like inositol polyphosphatase (IPPase) gene has been cloned from Selenomonas ruminantium subsp. lactilytica (phyAsrl). The deduced amino acid sequence of PhyAsrl is most similar to a PTP-like IPPase from the anaerobic bacterium S. ruminantium (35% identity), but also shows similarity (19-30% identity) to various other putative prokaryotic PTPs. Recombinant PhyAsrl could dephosphorylate myo-inositol hexakisphosphate (Ins P(6)) in vitro, and maximal activity was displayed at an ionic strength of 200 mM, a pH of 4.5, and a temperature of 55 degrees C. In order to elucidate its substrate specificity and pathway of Ins P(6) dephosphorylation, a combination of kinetic and high-performance ion-pair chromatography studies were conducted. The data indicated that PhyAsrl has a general specificity for polyphosphorylated myo-inositol substrates, but can also dephosphorylate molecules containing high energy pyrophosphate bonds in vitro. PhyAsrl is unique from other microbial IPPases in that it preferentially cleaves the 5-phosphate position of Ins P(6). Furthermore, it can produce Ins(2)P via a highly unique and ordered pathway of sequential dephosphorylation: Ins P(6), Ins(1,2,3,4,6)P(5), D-Ins(1,2,3,6)P(4), Ins(1,2,3)P(3), and D/L-Ins(1,2)P(2). Finally, reverse transcription PCR was used to determine that phyAsrl is constitutively expressed, and together with bioinformatic analysis, was used to gain an understanding of its physiological significance.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010832 6-Phytase An enzyme that catalyzes the conversion of myo-inositol hexakisphosphate and water to 1L-myo-inositol 1,2,3,4,5-pentakisphosphate and orthophosphate. EC 3.1.3.26. Phytase,6 Phytase
D010833 Phytic Acid Complexing agent for removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. Inositol Hexaphosphate,Phytin,Calcium Phytate,Inositol Hexakisphosphate,Phytate,Sodium Phytate,Acid, Phytic,Hexakisphosphate, Inositol,Hexaphosphate, Inositol,Phytate, Calcium,Phytate, Sodium
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning

Related Publications

Aaron A Puhl, and Ralf Greiner, and L Brent Selinger
July 2008, Plant molecular biology,
Aaron A Puhl, and Ralf Greiner, and L Brent Selinger
June 2018, 3 Biotech,
Aaron A Puhl, and Ralf Greiner, and L Brent Selinger
September 1998, General pharmacology,
Aaron A Puhl, and Ralf Greiner, and L Brent Selinger
January 2005, Journal of biochemistry and molecular biology,
Aaron A Puhl, and Ralf Greiner, and L Brent Selinger
August 1998, Proceedings of the National Academy of Sciences of the United States of America,
Aaron A Puhl, and Ralf Greiner, and L Brent Selinger
July 2006, The FEBS journal,
Aaron A Puhl, and Ralf Greiner, and L Brent Selinger
January 1994, Infection and immunity,
Copied contents to your clipboard!