A model for oligomeric regulation of APOBEC3G cytosine deaminase-dependent restriction of HIV. 2008

Linda Chelico, and Elizabeth J Sacho, and Dorothy A Erie, and Myron F Goodman
Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California 90089-2910, USA.

APOBEC3G (A3G) restricts HIV-1 infection by catalyzing processive C --> U deaminations on single-stranded DNA (ssDNA) with marked 3' --> 5' deamination polarity. Here we show that A3G exists in oligomeric states whose composition is dictated primarily by interactions with DNA, with salt playing an important, yet secondary, role. Directional deaminations correlate with the presence of dimers, tetramers, and larger oligomers observed by atomic force microscopy, and random deaminations appear to correlate mainly with monomers. The presence of a 30-nt weakly deaminated "dead" zone located at the 3'-ssDNA end implies the presence of a preferred asymmetric direction for A3G catalysis. Single turnover reaction rates reveal a salt-dependent inhibition of C deamination toward the 3'-ssDNA region, offering a molecular basis underlying A3G deamination polarity. Presteady state analysis demonstrates rapid diffusion-limited A3G-ssDNA binding, a slower salt-dependent conformational change, possibly indicative of DNA wrapping, and long (5-15 min) protein-DNA complex lifetimes. We suggest that diverse A3G oligomerization modes contribute to the human immunodeficiency virus, type 1, proviral DNA mutational bias.

UI MeSH Term Description Entries
D007313 Insecta Members of the phylum ARTHROPODA composed or organisms characterized by division into three parts: head, thorax, and abdomen. They are the dominant group of animals on earth with several hundred thousand different kinds. Three orders, HEMIPTERA; DIPTERA; and SIPHONAPTERA; are of medical interest in that they cause disease in humans and animals. (From Borror et al., An Introduction to the Study of Insects, 4th ed, p1). Insects,Insect
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D003564 Cytidine Deaminase An enzyme that catalyzes the deamination of cytidine, forming uridine. EC 3.5.4.5. Cytidine Aminohydrolase,Aminohydrolase, Cytidine,Deaminase, Cytidine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated

Related Publications

Linda Chelico, and Elizabeth J Sacho, and Dorothy A Erie, and Myron F Goodman
May 2009, Virology,
Linda Chelico, and Elizabeth J Sacho, and Dorothy A Erie, and Myron F Goodman
September 2017, Nature communications,
Linda Chelico, and Elizabeth J Sacho, and Dorothy A Erie, and Myron F Goodman
March 2008, Nature,
Linda Chelico, and Elizabeth J Sacho, and Dorothy A Erie, and Myron F Goodman
March 2009, PLoS pathogens,
Linda Chelico, and Elizabeth J Sacho, and Dorothy A Erie, and Myron F Goodman
March 2012, ACS chemical biology,
Linda Chelico, and Elizabeth J Sacho, and Dorothy A Erie, and Myron F Goodman
January 2007, Nucleic acids research,
Linda Chelico, and Elizabeth J Sacho, and Dorothy A Erie, and Myron F Goodman
January 2011, PloS one,
Linda Chelico, and Elizabeth J Sacho, and Dorothy A Erie, and Myron F Goodman
October 2004, The Journal of biological chemistry,
Linda Chelico, and Elizabeth J Sacho, and Dorothy A Erie, and Myron F Goodman
December 2006, World journal of gastroenterology,
Copied contents to your clipboard!