Reconstructing the pancreas: restoration of normoglycemia, exocrine function, and islet innervation by islet transplantation to the pancreas. 2008

J Stagner, and B Ahren, and F Sundler, and K White
Department of Veterans Affairs Medical Center, Louisville, Kentucky 40206, USA. john.stagner@va.gov

Impaired function in transplanted islets may be ascribed in part to disturbed reinnervation. The objectives of this study were to determine whether islet transplantation to the pancreas in the presence of nerve growth factor (NGF) would restore islet innervation and endocrine and exocrine pancreatic function. Streptozotocin-diabetic Lewis rats received 800 syngeneic islets beneath the pancreatic capsule in the presence or absence of NGF (20 ng/d for 14 days). Fasting blood glucose was measured for 3 months. The pancreata were isolated and perfused in situ. Pancreatic juice was collected for amylase determination. The sympathetic trunks were isolated and stimulated electrically. The tissues were immunostained for nerve markers. All islet recipients remained euglycemic (4.2 +/- 0.6 mmol/L glucose). Ductal amylase concentrations were restored to near normal levels in contrast to diabetic controls (normal rat 98 +/- 8 U/L, islet transplant 78.4 +/- 9 U/L, diabetic control 14.5 +/- 8 U/L). NGF enhanced the innervation of transplanted islets in contrast to control islet transplants. Sympathetic adrenergic innervation was significantly increased by NGF (tyrosine hydroxylase [P < .001] and neuropeptide Y [P < .05]). No differences in parasympathetic innervation were observed (vesicular acetylcholine transporter). Electrical stimulation of the sympathetic trunks in the presence of 4 micromol/L phentolamine and 5 micromol/L atropine resulted in increased insulin secretion in NGF-treated islet transplants (164%) compared with control transplants (30%). The combination of growth factors and the pancreatic site may allow the use of fewer islets than conventional islet transplant sites and promote more normal transplanted islet function by the enhancement of islet reinnervation.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008297 Male Males
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Stagner, and B Ahren, and F Sundler, and K White
August 2006, Current diabetes reports,
J Stagner, and B Ahren, and F Sundler, and K White
November 1974, The Medical clinics of North America,
J Stagner, and B Ahren, and F Sundler, and K White
February 1994, Clinical transplantation,
J Stagner, and B Ahren, and F Sundler, and K White
October 2012, Current diabetes reports,
J Stagner, and B Ahren, and F Sundler, and K White
January 1997, Advances in experimental medicine and biology,
J Stagner, and B Ahren, and F Sundler, and K White
May 2009, Der Internist,
J Stagner, and B Ahren, and F Sundler, and K White
July 1992, The British journal of surgery,
J Stagner, and B Ahren, and F Sundler, and K White
May 2012, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!