Cachexia in the non-obese diabetic mouse is associated with CD4+ T-cell lymphopenia. 2008

Chunfang Zhao, and Zhuanzhi Wang, and Michael W Robertson, and Joanna D Davies
Torrey Pines Institute for Molecular Studies, General Atomics Court, San Diego, CA 92121, USA.

One of the long-term consequences of Type I diabetes is weight loss with muscle atrophy, the hallmark phenotype of cachexia. A number of disorders that result in cachexia are associated with immune deficiency. However, whether immune deficiency is a cause or an effect of cachexia is not known. This study examines the non-obese diabetic mouse, the mouse model for spontaneous Type I diabetes, as a potential model to study lymphopenia in cachexia, and to determine whether lymphopenia plays a role in the development of cachexia. The muscle atrophy seen in patients with Type I diabetes involves active protein degradation by activation of the ubiquitin-proteasome pathway, indicating cachexia. Evidence of cachexia in the non-obese diabetic mouse was determined by measuring skeletal muscle atrophy, activation of the ubiquitin-proteasome pathway, and apoptosis, a state also described in some models of cachexia. CD4+ T-cell subset lymphopenia was measured in wasting and non-wasting diabetic mice. Our data show that the mechanism of wasting in diabetic mice involves muscle atrophy, a significant increase in ubiquitin conjugation, and upregulation of the ubiquitin ligases, muscle RING finger 1 (MuRF1) and muscle atrophy F box/atrogin-1 (MAFbx), indicating cachexia. Moreover, fragmentation of DNA isolated from atrophied muscle tissue indicates apoptosis. While CD4+ T-cell lymphopenia is evident in all diabetic mice, CD4+ T cells that express a very low density of CD44 were significantly lost in wasting, but not non-wasting, diabetic mice. These data suggest that CD4+ T-cell subsets are not equally susceptible to cachexia-associated lymphopenia in diabetic mice.

UI MeSH Term Description Entries
D008231 Lymphopenia Reduction in the number of lymphocytes. Lymphocytopenia,Lymphocytopenias,Lymphopenias
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009133 Muscular Atrophy Derangement in size and number of muscle fibers occurring with aging, reduction in blood supply, or following immobilization, prolonged weightlessness, malnutrition, and particularly in denervation. Atrophy, Muscle,Neurogenic Muscular Atrophy,Neurotrophic Muscular Atrophy,Atrophies, Muscle,Atrophies, Muscular,Atrophies, Neurogenic Muscular,Atrophies, Neurotrophic Muscular,Atrophy, Muscular,Atrophy, Neurogenic Muscular,Atrophy, Neurotrophic Muscular,Muscle Atrophies,Muscle Atrophy,Muscular Atrophies,Muscular Atrophies, Neurogenic,Muscular Atrophies, Neurotrophic,Muscular Atrophy, Neurogenic,Muscular Atrophy, Neurotrophic,Neurogenic Muscular Atrophies,Neurotrophic Muscular Atrophies
D002100 Cachexia General ill health, malnutrition, and weight loss, usually associated with chronic disease.
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004326 Drinking The consumption of liquids. Water Consumption,Water Intake,Drinkings
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D005260 Female Females
D000070584 Tripartite Motif Proteins A protein family defined by the presence of three ZINC FINGER domains, one of which is a RING FINGER DOMAIN, a coiled-coil region, and a highly variable C-terminal region. They function in many cellular processes including APOPTOSIS and CELL CYCLE regulation. RBCC Protein,TRIM Protein,Tripartite Motif Protein,RBCC Protein Family,RBCC Proteins,TRIM Protein Family,TRIM Proteins,Family, RBCC Protein,Family, TRIM Protein,Motif Protein, Tripartite,Motif Proteins, Tripartite,Protein Family, RBCC,Protein Family, TRIM,Protein, RBCC,Protein, TRIM,Protein, Tripartite Motif,Proteins, RBCC,Proteins, TRIM,Proteins, Tripartite Motif

Related Publications

Chunfang Zhao, and Zhuanzhi Wang, and Michael W Robertson, and Joanna D Davies
April 1994, Diabetologia,
Chunfang Zhao, and Zhuanzhi Wang, and Michael W Robertson, and Joanna D Davies
January 1998, Life sciences,
Chunfang Zhao, and Zhuanzhi Wang, and Michael W Robertson, and Joanna D Davies
July 2014, The British journal of dermatology,
Chunfang Zhao, and Zhuanzhi Wang, and Michael W Robertson, and Joanna D Davies
April 1991, Journal of autoimmunity,
Chunfang Zhao, and Zhuanzhi Wang, and Michael W Robertson, and Joanna D Davies
January 2014, PloS one,
Chunfang Zhao, and Zhuanzhi Wang, and Michael W Robertson, and Joanna D Davies
May 2007, Immunology,
Chunfang Zhao, and Zhuanzhi Wang, and Michael W Robertson, and Joanna D Davies
March 2017, Journal of autoimmunity,
Chunfang Zhao, and Zhuanzhi Wang, and Michael W Robertson, and Joanna D Davies
April 2018, The Indian journal of medical research,
Chunfang Zhao, and Zhuanzhi Wang, and Michael W Robertson, and Joanna D Davies
December 2010, Immunology,
Chunfang Zhao, and Zhuanzhi Wang, and Michael W Robertson, and Joanna D Davies
May 2022, BMC cancer,
Copied contents to your clipboard!