Atrophy-resistant fibers in permanent peripheral denervation of human skeletal muscle. 2008

Donatella Biral, and Helmut Kern, and Nicoletta Adami, and Simona Boncompagni, and Feliciano Protasi, and Ugo Carraro
Italian C.N.R. Institute of Neuroscience, and Laboratory of Translational Myology, Interdepartmental Research Center of Myology, c/o Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy.

OBJECTIVE Human muscle fibers usually undergo severe atrophy/degeneration as a result of long-term peripheral denervation. However, some biopsies from paraplegic patients suffering complete conus cauda syndrome display the presence of a small percentage of muscle fibers with a very large diameter (big fibers). The objective of the present study is to determine if these big fibers are the result of residual innervation/reinnervation, or if instead they are fibers resistant to atrophy. METHODS Human muscle biopsies were harvested from the vastus lateralis of spinal cord injury (SCI) patients affected by complete lower motor neuron lesion (LML). The specimens were either processed for light microscopy or embedded for electron microscopy (EM). RESULTS Our results indicate that the big fibers are neither the results of residual innervation or sparse reinnervation. In spite of the fact that the extrasynaptic NCAM immunostaining disappear a few months after SCI, the big fibers are characterized by positive molecular markers of denervation, that is, the differential labeling of their dystrophin molecule by anti-C and anti-N terminals antibodies. Furthermore, the EM analysis shows that these cells present the peculiar ultrastructural disarrangements of the contractile apparatus and of the internal membrane systems characteristic of 'peripheral denervation'. No fibers presenting large areas of cross-striation were found. The EM analysis provides the final evidence that these big fibers are muscle fibers which are indeed denervated, very different from normal and/or disused (e.g. upper motor neuron lesion) muscle fibers. CONCLUSIONS Although these large muscle fibers are surprisingly more frequent in human muscle biopsies after 3 years from SCI than earlier, it remains to be determined whether their presence in some biopsies but not in others is caused by sampling, or is related to other factors such as to subjects' background genetics, or the extent of passive stretching induced by different rehabilitation strategies.

UI MeSH Term Description Entries
D008137 Longitudinal Studies Studies in which variables relating to an individual or group of individuals are assessed over a period of time. Bogalusa Heart Study,California Teachers Study,Framingham Heart Study,Jackson Heart Study,Longitudinal Survey,Tuskegee Syphilis Study,Bogalusa Heart Studies,California Teachers Studies,Framingham Heart Studies,Heart Studies, Bogalusa,Heart Studies, Framingham,Heart Studies, Jackson,Heart Study, Bogalusa,Heart Study, Framingham,Heart Study, Jackson,Jackson Heart Studies,Longitudinal Study,Longitudinal Surveys,Studies, Bogalusa Heart,Studies, California Teachers,Studies, Jackson Heart,Studies, Longitudinal,Study, Bogalusa Heart,Study, California Teachers,Study, Longitudinal,Survey, Longitudinal,Surveys, Longitudinal,Syphilis Studies, Tuskegee,Syphilis Study, Tuskegee,Teachers Studies, California,Teachers Study, California,Tuskegee Syphilis Studies
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D009133 Muscular Atrophy Derangement in size and number of muscle fibers occurring with aging, reduction in blood supply, or following immobilization, prolonged weightlessness, malnutrition, and particularly in denervation. Atrophy, Muscle,Neurogenic Muscular Atrophy,Neurotrophic Muscular Atrophy,Atrophies, Muscle,Atrophies, Muscular,Atrophies, Neurogenic Muscular,Atrophies, Neurotrophic Muscular,Atrophy, Muscular,Atrophy, Neurogenic Muscular,Atrophy, Neurotrophic Muscular,Muscle Atrophies,Muscle Atrophy,Muscular Atrophies,Muscular Atrophies, Neurogenic,Muscular Atrophies, Neurotrophic,Muscular Atrophy, Neurogenic,Muscular Atrophy, Neurotrophic,Neurogenic Muscular Atrophies,Neurotrophic Muscular Atrophies
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D013119 Spinal Cord Injuries Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., WOUNDS, GUNSHOT; WHIPLASH INJURIES; etc.). Myelopathy, Traumatic,Injuries, Spinal Cord,Post-Traumatic Myelopathy,Spinal Cord Contusion,Spinal Cord Laceration,Spinal Cord Transection,Spinal Cord Trauma,Contusion, Spinal Cord,Contusions, Spinal Cord,Cord Contusion, Spinal,Cord Contusions, Spinal,Cord Injuries, Spinal,Cord Injury, Spinal,Cord Laceration, Spinal,Cord Lacerations, Spinal,Cord Transection, Spinal,Cord Transections, Spinal,Cord Trauma, Spinal,Cord Traumas, Spinal,Injury, Spinal Cord,Laceration, Spinal Cord,Lacerations, Spinal Cord,Myelopathies, Post-Traumatic,Myelopathies, Traumatic,Myelopathy, Post-Traumatic,Post Traumatic Myelopathy,Post-Traumatic Myelopathies,Spinal Cord Contusions,Spinal Cord Injury,Spinal Cord Lacerations,Spinal Cord Transections,Spinal Cord Traumas,Transection, Spinal Cord,Transections, Spinal Cord,Trauma, Spinal Cord,Traumas, Spinal Cord,Traumatic Myelopathies,Traumatic Myelopathy
D016189 Dystrophin A muscle protein localized in surface membranes which is the product of the Duchenne/Becker muscular dystrophy gene. Individuals with Duchenne muscular dystrophy usually lack dystrophin completely while those with Becker muscular dystrophy have dystrophin of an altered size. It shares features with other cytoskeletal proteins such as SPECTRIN and alpha-actinin but the precise function of dystrophin is not clear. One possible role might be to preserve the integrity and alignment of the plasma membrane to the myofibrils during muscle contraction and relaxation. MW 400 kDa.
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

Donatella Biral, and Helmut Kern, and Nicoletta Adami, and Simona Boncompagni, and Feliciano Protasi, and Ugo Carraro
March 1982, Muscle & nerve,
Donatella Biral, and Helmut Kern, and Nicoletta Adami, and Simona Boncompagni, and Feliciano Protasi, and Ugo Carraro
January 1984, Journal of neurology,
Donatella Biral, and Helmut Kern, and Nicoletta Adami, and Simona Boncompagni, and Feliciano Protasi, and Ugo Carraro
May 1963, The Journal of cell biology,
Donatella Biral, and Helmut Kern, and Nicoletta Adami, and Simona Boncompagni, and Feliciano Protasi, and Ugo Carraro
November 1954, Archives of physical medicine and rehabilitation,
Donatella Biral, and Helmut Kern, and Nicoletta Adami, and Simona Boncompagni, and Feliciano Protasi, and Ugo Carraro
August 2021, International journal of molecular sciences,
Donatella Biral, and Helmut Kern, and Nicoletta Adami, and Simona Boncompagni, and Feliciano Protasi, and Ugo Carraro
December 1955, American journal of physical medicine,
Donatella Biral, and Helmut Kern, and Nicoletta Adami, and Simona Boncompagni, and Feliciano Protasi, and Ugo Carraro
May 2002, Current opinion in clinical nutrition and metabolic care,
Donatella Biral, and Helmut Kern, and Nicoletta Adami, and Simona Boncompagni, and Feliciano Protasi, and Ugo Carraro
June 2016, European journal of translational myology,
Donatella Biral, and Helmut Kern, and Nicoletta Adami, and Simona Boncompagni, and Feliciano Protasi, and Ugo Carraro
January 1971, Enzyme,
Donatella Biral, and Helmut Kern, and Nicoletta Adami, and Simona Boncompagni, and Feliciano Protasi, and Ugo Carraro
January 2024, Current protein & peptide science,
Copied contents to your clipboard!