Quantification of interplay effects of scanned particle beams and moving targets. 2008

Christoph Bert, and Sven O Grözinger, and Eike Rietzel
Gesellschaft für Schwerionenforschung mbH (GSI), Abt. Biophysik, Darmstadt, Germany. c.bert@gsi.de

Scanned particle beams and target motion interfere. This interplay leads to deterioration of the dose distribution. Experiments and a treatment planning study were performed to investigate interplay. Experiments were performed with moving radiographic films for different motion parameters. Resulting dose distributions were analyzed for homogeneity and dose coverage. The treatment planning study was based on the time-resolved computed tomography (4DCT) data of five lung tumor patients. Treatment plans with margins to account for respiratory motion were optimized, and resulting dose distributions for 108 different motion parameters for each patient were calculated. Data analysis for a single fraction was based on dose-volume histograms and the volume covered with 95% of the planned dose. Interplay deteriorated dose conformity and homogeneity (1-standard deviation/mean) in the experiments as well as in the treatment-planning study. The homogeneity on radiographic films was below approximately 80% for motion amplitudes of approximately 15 mm. For the treatment-planning study based on patient data, the target volume receiving at least 95% of the prescribed dose was on average (standard deviation) 71.0% (14.2%). Interplay of scanned particle beams and moving targets has severe impact on the resulting dose distributions. Fractionated treatment delivery potentially mitigates at least parts of these interplay effects. However, especially for small fraction numbers, e.g. hypo-fractionation, treatment of moving targets with scanned particle beams requires motion mitigation techniques such as rescanning, gating, or tracking.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D009038 Motion Physical motion, i.e., a change in position of a body or subject as a result of an external force. It is distinguished from MOVEMENT, a process resulting from biological activity. Motions
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D010315 Particle Accelerators Devices which accelerate electrically charged atomic or subatomic particles, such as electrons, protons or ions, to high velocities so they have high kinetic energy. Betatrons,Linear Accelerators,Accelerator, Linear,Accelerator, Particle,Accelerators, Linear,Accelerators, Particle,Betatron,Linear Accelerator,Particle Accelerator
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014057 Tomography, X-Ray Computed Tomography using x-ray transmission and a computer algorithm to reconstruct the image. CAT Scan, X-Ray,CT Scan, X-Ray,Cine-CT,Computerized Tomography, X-Ray,Electron Beam Computed Tomography,Tomodensitometry,Tomography, Transmission Computed,X-Ray Tomography, Computed,CAT Scan, X Ray,CT X Ray,Computed Tomography, X-Ray,Computed X Ray Tomography,Computerized Tomography, X Ray,Electron Beam Tomography,Tomography, X Ray Computed,Tomography, X-Ray Computer Assisted,Tomography, X-Ray Computerized,Tomography, X-Ray Computerized Axial,Tomography, Xray Computed,X Ray Computerized Tomography,X Ray Tomography, Computed,X-Ray Computer Assisted Tomography,X-Ray Computerized Axial Tomography,Beam Tomography, Electron,CAT Scans, X-Ray,CT Scan, X Ray,CT Scans, X-Ray,CT X Rays,Cine CT,Computed Tomography, Transmission,Computed Tomography, X Ray,Computed Tomography, Xray,Computed X-Ray Tomography,Scan, X-Ray CAT,Scan, X-Ray CT,Scans, X-Ray CAT,Scans, X-Ray CT,Tomographies, Computed X-Ray,Tomography, Computed X-Ray,Tomography, Electron Beam,Tomography, X Ray Computer Assisted,Tomography, X Ray Computerized,Tomography, X Ray Computerized Axial,Transmission Computed Tomography,X Ray Computer Assisted Tomography,X Ray Computerized Axial Tomography,X Ray, CT,X Rays, CT,X-Ray CAT Scan,X-Ray CAT Scans,X-Ray CT Scan,X-Ray CT Scans,X-Ray Computed Tomography,X-Ray Computerized Tomography,Xray Computed Tomography

Related Publications

Christoph Bert, and Sven O Grözinger, and Eike Rietzel
February 2013, Physics in medicine and biology,
Christoph Bert, and Sven O Grözinger, and Eike Rietzel
March 2009, International journal of radiation oncology, biology, physics,
Christoph Bert, and Sven O Grözinger, and Eike Rietzel
July 2014, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB),
Christoph Bert, and Sven O Grözinger, and Eike Rietzel
August 2009, Physics in medicine and biology,
Christoph Bert, and Sven O Grözinger, and Eike Rietzel
August 2020, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB),
Christoph Bert, and Sven O Grözinger, and Eike Rietzel
July 2004, Physics in medicine and biology,
Christoph Bert, and Sven O Grözinger, and Eike Rietzel
May 2015, Scientific reports,
Christoph Bert, and Sven O Grözinger, and Eike Rietzel
October 2016, The British journal of radiology,
Christoph Bert, and Sven O Grözinger, and Eike Rietzel
January 2006, Journal of research of the National Institute of Standards and Technology,
Copied contents to your clipboard!