Cellular and molecular mechanisms underlying plasticity in uterine sympathetic nerves. 2008

M Mónica Brauer
Laboratory of Cell Biology, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay. brauer@iibce.edu.uy

Dynamic responses of uterine sympathetic nerves to changes in the circulating levels of sex hormones represent one of the most remarkable examples of physiological plasticity in the adult autonomic nervous system. The density of uterine sympathetic nerves is markedly and irreversibly reduced following puberty, and shows phases of degeneration and regeneration during the natural oestrous cycle. Even more remarkable, uterine sympathetic nerves degenerate during normal pregnancy and regenerate following delivery. Plasticity in uterine sympathetic nerves was initially interpreted as a selective effect of sex hormones on the system of paracervical short adrenergic neurons supplying the uterus. In the last decade, the alternative explanation that sex hormones might alter the ability of the uterine tissue to support its innervation began to be explored and current evidence indicates that oestrogen and pregnancy elicit changes in the neuritogenic properties of the target uterine tissue. In addition, there are indications that sex hormones may also affect the receptivity of uterine-related sympathetic neurons to target-derived signals. Although the nature of these signals is still fragmentary, there is evidence for the contribution of a range of molecules, including neurotrophins, pro-neurotrophins and chemorepulsive signals of the semaphorin family. This review summarizes some general features of plasticity in uterine sympathetic nerves and highlights recent investigations of the cellular and molecular mechanisms underlying this dramatic model of natural plasticity.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012739 Gonadal Steroid Hormones Steroid hormones produced by the GONADS. They stimulate reproductive organs, germ cell maturation, and the secondary sex characteristics in the males and the females. The major sex steroid hormones include ESTRADIOL; PROGESTERONE; and TESTOSTERONE. Gonadal Steroid Hormone,Sex Hormone,Sex Steroid Hormone,Sex Steroid Hormones,Sex Hormones,Hormone, Gonadal Steroid,Hormone, Sex,Hormone, Sex Steroid,Hormones, Gonadal Steroid,Hormones, Sex Steroid,Steroid Hormone, Gonadal,Steroid Hormone, Sex,Steroid Hormones, Gonadal,Steroid Hormones, Sex
D013564 Sympathetic Nervous System The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system. Nervous System, Sympathetic,Nervous Systems, Sympathetic,Sympathetic Nervous Systems,System, Sympathetic Nervous,Systems, Sympathetic Nervous

Related Publications

M Mónica Brauer
May 2005, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M Mónica Brauer
July 2014, The Journal of general virology,
M Mónica Brauer
September 2022, Trends in cancer,
M Mónica Brauer
November 2011, Seikagaku. The Journal of Japanese Biochemical Society,
Copied contents to your clipboard!