High mobility group chromosomal proteins bind to AT-rich tracts flanking plant genes. 1991

T J Pedersen, and L J Arwood, and S Spiker, and M J Guiltinan, and W F Thompson
Department of Botany, North Carolina State University, Raleigh 27695-7612.

AT-rich sequences in the 5' flanking regions of several plant genes have been shown to bind nuclear proteins, but the nature of these proteins has remained largely unknown. We report here that certain plant high mobility group (HMG) chromosomal proteins can interact specifically (in the presence of excess non-specific competitor) with AT-rich sequences located upstream of the pea ferredoxin 1 gene (Fed-1) and a member of the wheat Em gene family. Binding was observed with highly purified preparations of HMGa or HMGb, but not with HMGc or HMGd. HMG-DNA complexes were similar to one of the two types of Fed-1 complexes we observed previously using pea nuclear extracts [7]. HMG binding to the Fed-1 DNA was localized to a region containing AT-rich sequences; very similar sequences are present 5' to Em and several other plants genes. Such sequences have been shown to bind unidentified nuclear proteins in a number of these systems. Binding experiments with a synthetic oligo (dA).oligo (dT) probe and competition experiments with synthetic DNA polymers suggest that HMG binding may depend upon structural features of AT-rich DNA rather than being sequence-specific. We discuss the implications of these findings and suggest a role for HMG binding which is consistent with previous evidence linking HMGs with transcriptionally competent chromatin.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011067 Poly dA-dT Polydeoxyribonucleotides made up of deoxyadenine nucleotides and thymine nucleotides. Present in DNA preparations isolated from crab species. Synthetic preparations have been used extensively in the study of DNA. Poly(Deoxyadenylate-Thymidylate),Polydeoxyadenine Nucleotides-Polythymine Nucleotides,Poly dA dT,Poly(dA-dT),d(A(5)T(5))2,Nucleotides, Polydeoxyadenine Nucleotides-Polythymine,Nucleotides-Polythymine Nucleotides, Polydeoxyadenine,Polydeoxyadenine Nucleotides Polythymine Nucleotides,dA dT, Poly,dA-dT, Poly,dT, Poly dA
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005288 Ferredoxins Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Ferredoxin,Ferredoxin I,Ferredoxin II,Ferredoxin III
D006609 High Mobility Group Proteins A family of low-molecular weight, non-histone proteins found in chromatin. HMG Proteins,Calf Thymus Chromatin Protein HMG,High Mobility Group Chromosomal Proteins
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

T J Pedersen, and L J Arwood, and S Spiker, and M J Guiltinan, and W F Thompson
February 1995, The Plant journal : for cell and molecular biology,
T J Pedersen, and L J Arwood, and S Spiker, and M J Guiltinan, and W F Thompson
October 1984, The Journal of biological chemistry,
T J Pedersen, and L J Arwood, and S Spiker, and M J Guiltinan, and W F Thompson
February 1981, The Journal of cell biology,
T J Pedersen, and L J Arwood, and S Spiker, and M J Guiltinan, and W F Thompson
March 2007, FEBS letters,
T J Pedersen, and L J Arwood, and S Spiker, and M J Guiltinan, and W F Thompson
January 1980, FEBS letters,
T J Pedersen, and L J Arwood, and S Spiker, and M J Guiltinan, and W F Thompson
March 2001, Trends in biochemical sciences,
T J Pedersen, and L J Arwood, and S Spiker, and M J Guiltinan, and W F Thompson
March 1978, Biochemical and biophysical research communications,
T J Pedersen, and L J Arwood, and S Spiker, and M J Guiltinan, and W F Thompson
September 1979, Journal of biochemistry,
T J Pedersen, and L J Arwood, and S Spiker, and M J Guiltinan, and W F Thompson
September 1987, Plant molecular biology,
T J Pedersen, and L J Arwood, and S Spiker, and M J Guiltinan, and W F Thompson
February 1991, The Journal of biological chemistry,
Copied contents to your clipboard!