Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. 2008

Kyriaki Gerozissis
Chercheur INSERM, UMR 7059 CNRS, University Paris 7, 2 place Jussieu, case 7126, 75251 Paris CEDEX 05, France. gerozissis@yahoo.co.uk

The central nervous system is essential in maintaining energy and glucose homeostasis. In both animals and humans, efficient cerebral insulin signalling is a pivotal control element in these pathophysiological processes. The action of insulin in the brain is under a multilevel control via metabolic, endocrine and neural signals induced by nutrients, integrated mainly by the hypothalamus. Of particular interest is the interaction of insulin with the anabolic and catabolic neuroregulators. The anorexic peptides insulin, leptin and the neurotransmitter serotonin share common signalling pathways involved in food intake, in particular the insulin receptor substrate, phosphatidylinositol-3-kinase (PI3K) pathway. The dialogue of neurotransmitters and peptides via this signalling pathway is potentially of major importance in the pathophysiology of the brain in general and specifically in the regulation of feeding behaviour. At this time, a new concept in the aetiopathology of type 2 diabetes is immerging. This concept proposes that the combination of defective pancreatic beta-cell function and insulin resistance not only in classical insulin target tissues but in every tissue, contributes to the onset of the disease. It highlights the importance of the disruption of cerebral insulin signal transmission and its direct relation to metabolic diseases. Impaired brain insulin signalling, a link coupling obesity to diabetes, may be related to either genetic factors, or environmental factors such as stress, over or under-feeding and unbalanced diets: such factors may work either independently or in concert. Current approaches used for the prevention and treatment of type 2 diabetes are not adequately effective. Most of the anti-diabetic therapies induce many adverse effects, in particular obesity, and thus may initiate a vicious cycle of problems. In order to develop new, more efficient, preventive and therapeutic strategies for metabolic pathologies, there is an urgent need for increased understanding of the complexity of insulin signalling in the brain and on the interactive, central and peripheral effects of insulin.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002149 Energy Intake Total number of calories taken in daily whether ingested or by parenteral routes. Caloric Intake,Calorie Intake,Intake, Calorie,Intake, Energy
D003920 Diabetes Mellitus A heterogeneous group of disorders characterized by HYPERGLYCEMIA and GLUCOSE INTOLERANCE.
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Kyriaki Gerozissis
October 2017, Journal of neuroendocrinology,
Kyriaki Gerozissis
July 2006, The Journal of clinical investigation,
Kyriaki Gerozissis
February 2019, Molecular neurobiology,
Kyriaki Gerozissis
August 2007, Physiology (Bethesda, Md.),
Kyriaki Gerozissis
November 2014, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Kyriaki Gerozissis
June 2017, Cell metabolism,
Kyriaki Gerozissis
September 2011, The Journal of clinical investigation,
Kyriaki Gerozissis
August 2021, Nature reviews. Endocrinology,
Kyriaki Gerozissis
March 2007, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!