Enhanced vascular permeability in rat skin induced by sensory nerve stimulation: evaluation of the time course and appropriate stimulation parameters. 2008

N M E Carmichael, and J O Dostrovsky, and M P Charlton
University of Toronto, Department of Physiology, Toronto, Ontario, Canada. nicole.carmichael@utoronto.ca

Activation of nociceptors causes them to secrete neuropeptides. The binding of these peptides to receptors on blood vessels causes vasodilation and increased vascular permeability that allows loss of proteins and fluid (plasma extravasation, PE); this contributes to inflammation. This study defines the relationship between electrical activation of nociceptors and PE and evaluates the time course of this response in the skin of rats. We measured the time course and extent of PE by digital imaging of changes in skin reflectance caused by leakage of Evans Blue (EB) dye infused in the circulatory system before stimulation. Stimulation of the exclusively sensory saphenous nerve caused the skin to become dark blue within 2 min due to accumulation of EB. While PE is usually measured after 5-15 min of electrical stimulation, we found that stimulation for only 1 min at 4 Hz produced maximum PE. This response was dependent on the number of electrical stimuli at least for 4 Hz and 8 Hz stimulation rates. Since accumulation of EB in the skin is only slowly reversible, to determine the duration of enhanced vascular permeability we administered EB at various times after electrical stimulation of the saphenous nerve. PE was only observed when EB was infused within 5 min of electrical stimulation but could still be observed 50 min after capsaicin (1%, 25 microl) injection into the hind paw. These findings indicate that enhanced vascular permeability evoked by electrical stimulation persists only briefly after release of neuropeptides from nociceptors in the skin. Therefore, treatment of inflammation by blockade of neuropeptide release and receptors may be more effective than treatments aimed at epithelial gaps. We propose, in models of stimulation-induced inflammation, the use of a short stimulus train.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008297 Male Males
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005070 Evans Blue An azo dye used in blood volume and cardiac output measurement by the dye dilution method. It is very soluble, strongly bound to plasma albumin, and disappears very slowly. Azovan Blue,C.I. 23860,C.I. Direct Blue 53,Evan's Blue,Blue, Azovan,Blue, Evan's,Blue, Evans,Evan Blue
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D013995 Time The dimension of the physical universe which, at a given place, orders the sequence of events. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Effects, Long-Term,Effects, Longterm,Long-Term Effects,Longterm Effects,Effect, Long-Term,Effect, Longterm,Effects, Long Term,Long Term Effects,Long-Term Effect,Longterm Effect

Related Publications

N M E Carmichael, and J O Dostrovsky, and M P Charlton
July 1991, Japanese journal of pharmacology,
N M E Carmichael, and J O Dostrovsky, and M P Charlton
March 1992, The American review of respiratory disease,
N M E Carmichael, and J O Dostrovsky, and M P Charlton
January 1975, Anais da Academia Brasileira de Ciencias,
N M E Carmichael, and J O Dostrovsky, and M P Charlton
November 1970, Immunology,
N M E Carmichael, and J O Dostrovsky, and M P Charlton
October 1988, Research communications in chemical pathology and pharmacology,
N M E Carmichael, and J O Dostrovsky, and M P Charlton
August 2022, Cells,
N M E Carmichael, and J O Dostrovsky, and M P Charlton
April 1981, Prostaglandins,
N M E Carmichael, and J O Dostrovsky, and M P Charlton
February 1970, British journal of experimental pathology,
Copied contents to your clipboard!