Monocyte chemoattractant protein-1 in human atheromatous plaques. 1991

N A Nelken, and S R Coughlin, and D Gordon, and J N Wilcox
Cardiovascular Research Institute, University of California, San Francisco 94143.

Monocytes appear to be central to atherogenesis both as the progenitors of foam cells and as a potential source of growth factors mediating intimal hyperplasia, but the chemical messages which stimulate the influx of monocytes into human atheroma remain unknown. Monocyte chemoattractant protein-1 (MCP-1) is a recently described molecule with powerful monocyte chemotactic activity expressed by monocytes, vascular endothelial cells, and smooth muscle cells in culture. To begin to address the role of MCP-1 in vivo, we examined 10 normal arteries and 14 diseased human arteries for MCP-1 expression by in situ hybridization. MCP-1 mRNA was detected in 16% of 10,768 cells counted in human carotid endarterectomy specimens with highest expression seen in organizing thrombi (33%) and in macrophage rich areas bordering the necrotic lipid core (24%) as compared to the fibrous cap (8%) and the necrotic lipid core itself (5%). Based on immunohistochemical staining of serial sections and on cell morphology, MCP-1 mRNA appeared to be expressed by vascular smooth muscle cells (VSMC), mesenchymal appearing intimal cells (MICs), and macrophages. By contrast, few cells expressing MCP-1 mRNA were found in normal arteries (less than 0.1%). These data suggest a potential role for MCP-1 in mediating monocytic infiltration of the artery wall.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002630 Chemotactic Factors Chemical substances that attract or repel cells. The concept denotes especially those factors released as a result of tissue injury, microbial invasion, or immunologic activity, that attract LEUKOCYTES; MACROPHAGES; or other cells to the site of infection or insult. Chemoattractant,Chemotactic Factor,Chemotaxin,Chemotaxins,Cytotaxinogens,Cytotaxins,Macrophage Chemotactic Factor,Chemoattractants,Chemotactic Factors, Macrophage,Macrophage Chemotactic Factors,Chemotactic Factor, Macrophage,Factor, Chemotactic,Factor, Macrophage Chemotactic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001161 Arteriosclerosis Thickening and loss of elasticity of the walls of ARTERIES of all sizes. There are many forms classified by the types of lesions and arteries involved, such as ATHEROSCLEROSIS with fatty lesions in the ARTERIAL INTIMA of medium and large muscular arteries. Arterioscleroses
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine

Related Publications

N A Nelken, and S R Coughlin, and D Gordon, and J N Wilcox
January 1991, Advances in experimental medicine and biology,
N A Nelken, and S R Coughlin, and D Gordon, and J N Wilcox
March 1990, Immunology today,
N A Nelken, and S R Coughlin, and D Gordon, and J N Wilcox
January 1999, Chemical immunology,
N A Nelken, and S R Coughlin, and D Gordon, and J N Wilcox
June 1995, Journal of immunology (Baltimore, Md. : 1950),
N A Nelken, and S R Coughlin, and D Gordon, and J N Wilcox
January 1992, Cytokines,
N A Nelken, and S R Coughlin, and D Gordon, and J N Wilcox
May 2000, Reviews of reproduction,
N A Nelken, and S R Coughlin, and D Gordon, and J N Wilcox
March 1994, Gene,
N A Nelken, and S R Coughlin, and D Gordon, and J N Wilcox
December 2002, Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine],
N A Nelken, and S R Coughlin, and D Gordon, and J N Wilcox
June 1997, Psychiatry and clinical neurosciences,
Copied contents to your clipboard!