[Enzyme deficiencies in glycolysis and nucleotide metabolism of red blood cells in nonspherocytic hemolytic anemia (author's transl)]. 1976

H D Waller, and H C Benöhr

The detection of enzyme deficiencies in glycolytic and nucleotide metabolism of human red blood cells has enriched the pathophysiological knowledge on the origin of nonspherocytic hemolytic anemias (NSHA). So far for 11 of 13 glycolytic enzymes deficiencies have been described which are connected with alterations of biochemical enzymatic properties. The most frequent enzyme deficiencies are those of GPI and PK. By performance of special electrophoretic techniques genetic studies allow the demonstration of homozygote and double heterozygote defect carriers. Up to now only adenylate kinase and pyrimidine 5' nucleotidase deficiencies have been detected as genetically determined in altered nucleotide metabolism. The metabolic alterations of several enzymopathies have been characterized so well, that the pathophysiological relations between enzyme deficiency and NSHA probably have been found to be a sufficient explanation.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009708 Nucleotidases A class of enzymes that catalyze the conversion of a nucleotide and water to a nucleoside and orthophosphate. EC 3.1.3.-.
D010732 Phosphofructokinase-1 An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues. 6-Phosphofructokinase,6-Phosphofructo-1-kinase,Fructose-6-P 1-Kinase,Fructose-6-phosphate 1-Phosphotransferase,6 Phosphofructokinase,Phosphofructokinase 1
D010735 Phosphoglycerate Kinase An enzyme catalyzing the transfer of a phosphate group from 3-phospho-D-glycerate in the presence of ATP to yield 3-phospho-D-glyceroyl phosphate and ADP. EC 2.7.2.3. Kinase, Phosphoglycerate
D010744 Phosphoric Monoester Hydrolases A group of hydrolases which catalyze the hydrolysis of monophosphoric esters with the production of one mole of orthophosphate. Phosphatase,Phosphatases,Phosphohydrolase,Phosphohydrolases,Phosphomonoesterase,Phosphomonoesterases,Phosphoric Monoester Hydrolase,Hydrolase, Phosphoric Monoester,Hydrolases, Phosphoric Monoester,Monoester Hydrolase, Phosphoric
D010751 Phosphopyruvate Hydratase A hydro-lyase that catalyzes the dehydration of 2-phosphoglycerate to form PHOSPHOENOLPYRUVATE. Several different isoforms of this enzyme exist, each with its own tissue specificity. Enolase,Neuron-Specific Enolase,2-Phospho-D-Glycerate Hydro-Lyase,2-Phospho-D-Glycerate Hydrolase,2-Phosphoglycerate Dehydratase,Enolase 2,Enolase 3,Muscle-Specific Enolase,Nervous System-Specific Enolase,Non-Neuronal Enolase,alpha-Enolase,beta-Enolase,gamma-Enolase,2 Phospho D Glycerate Hydro Lyase,2 Phospho D Glycerate Hydrolase,2 Phosphoglycerate Dehydratase,Dehydratase, 2-Phosphoglycerate,Enolase, Muscle-Specific,Enolase, Nervous System-Specific,Enolase, Neuron-Specific,Enolase, Non-Neuronal,Hydratase, Phosphopyruvate,Hydro-Lyase, 2-Phospho-D-Glycerate,Muscle Specific Enolase,Nervous System Specific Enolase,Neuron Specific Enolase,Non Neuronal Enolase,System-Specific Enolase, Nervous,alpha Enolase,beta Enolase,gamma Enolase
D011686 Purine-Pyrimidine Metabolism, Inborn Errors Dysfunctions in the metabolism of PURINES or PYRIMIDINES resulting from inborn genetic mutations that are inherited or acquired in utero. Purine Pyrimidine Metabolism, Inborn Errors

Related Publications

H D Waller, and H C Benöhr
September 1992, Clinical genetics,
H D Waller, and H C Benöhr
March 1970, Problemy gematologii i perelivaniia krovi,
H D Waller, and H C Benöhr
October 1966, Deutsche medizinische Wochenschrift (1946),
H D Waller, and H C Benöhr
May 1976, Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete,
H D Waller, and H C Benöhr
June 1962, Polski tygodnik lekarski (Warsaw, Poland : 1960),
H D Waller, and H C Benöhr
August 1981, Monatsschrift Kinderheilkunde : Organ der Deutschen Gesellschaft fur Kinderheilkunde,
H D Waller, and H C Benöhr
January 1969, Lahey Clinic Foundation bulletin,
Copied contents to your clipboard!