Induction of protective immunity in swine by immunization with live attenuated recombinant pseudorabies virus expressing the capsid precursor encoding regions of foot-and-mouth disease virus. 2008

Xiangmin Li, and Ruifeng Liu, and Huanju Tang, and Meilin Jin, and Huanchun Chen, and Ping Qian
State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China. lixiangmin@mail.hzau.edu.cn

Foot-and-mouth disease (FMD) causes morbidity to livestock and serious economic consequences to its associated industry and therefore it is necessary to develop a safe and efficient vaccine to prevent or control this disease. A recombinant live attenuated virus vaccine, designated PRV-P1, was generated by insertion of an expression cassette containing CMV promoter, FMDV P1 gene and SV 40 poly-A into the gG gene region of a live attenuated pseudorabies virus vaccine strain (TK-/gG-/LacZ+). To determine the induction of protective immunity, 16 FMDV and PRV seronegative white swine were randomly divided into four groups and immunized intramuscularly. The parental virus (TK-/gG-/LacZ+) was injected into three pigs, the recombinant virus PRV-P1 into five pigs and commercial FMD-inactivated vaccine into five pigs, with PBS (negative control) into three pigs. All animals were immunized again 4 weeks later to boost the immune response and challenged with virulent type O FMDV O/ES/2001 strain 4 weeks after the second immunization. Results showed PRV-P1 vaccinated pigs induced high-level neutralizing antibody response to both FMDV and PRV, and strong CTL response against FMD antigen activation. Three of five pigs were completely protected against challenge with FMDV, one pig minimally protected and the other one had increased protection but not complete. However, one pig vaccinated with commercial FMD vaccine developed constant pyrexia. Average levels of antibodies against non-structural 3ABC proteins were significantly lower and efficacy on inhibition of FMDV replication was much increased in swine vaccinated with PRV-P1 than those immunized with commercial FMD vaccine after FMDV challenge. Our results showed that the recombinant PRV-P1 can induce not only humoral and cell-mediated immune responses but also partial protection against FMDV challenge, making it a good candidate for future development of the FMD vaccine.

UI MeSH Term Description Entries
D007117 Immunization, Secondary Any immunization following a primary immunization and involving exposure to the same or a closely related antigen. Immunization, Booster,Revaccination,Secondary Immunization,Booster Immunization,Booster Immunizations,Immunizations, Booster,Immunizations, Secondary,Revaccinations,Secondary Immunizations
D007273 Injections, Intramuscular Forceful administration into a muscle of liquid medication, nutrient, or other fluid through a hollow needle piercing the muscle and any tissue covering it. Intramuscular Injections,Injection, Intramuscular,Intramuscular Injection
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D011558 Herpesvirus 1, Suid A species of VARICELLOVIRUS producing a respiratory infection (PSEUDORABIES) in swine, its natural host. It also produces an usually fatal ENCEPHALOMYELITIS in cattle, sheep, dogs, cats, foxes, and mink. Aujeszky's Disease Virus,Swine Herpesvirus 1,Aujeszky Disease Virus,Herpesvirus 1 (alpha), Suid,Herpesvirus Suis,Pseudorabies Virus,Suid Herpesvirus 1,Aujeszkys Disease Virus,Herpesvirus 1, Swine,Pseudorabies Viruses,Virus, Pseudorabies,Viruses, Pseudorabies
D003587 Cytomegalovirus A genus of the family HERPESVIRIDAE, subfamily BETAHERPESVIRINAE, infecting the salivary glands, liver, spleen, lungs, eyes, and other organs, in which they produce characteristically enlarged cells with intranuclear inclusions. Infection with Cytomegalovirus is also seen as an opportunistic infection in AIDS. Herpesvirus 5, Human,Human Herpesvirus 5,Salivary Gland Viruses,HHV 5,Herpesvirus 5 (beta), Human,Cytomegaloviruses,Salivary Gland Virus,Virus, Salivary Gland,Viruses, Salivary Gland
D005536 Foot-and-Mouth Disease A highly infectious disease caused by FOOT AND MOUTH DISEASE VIRUS that affects mammals of the ARTIODACTYLA order (CATTLE; SHEEP; GOATS; and PIGS) and is characterized by high fever followed by the appearance of blisters inside the mouth and on the feet. Foot and Mouth Disease,Disease, Foot-and-Mouth,Diseases, Foot-and-Mouth,Foot-and-Mouth Diseases
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000914 Antibodies, Viral Immunoglobulins produced in response to VIRAL ANTIGENS. Viral Antibodies
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

Xiangmin Li, and Ruifeng Liu, and Huanju Tang, and Meilin Jin, and Huanchun Chen, and Ping Qian
September 2007, BMC biotechnology,
Xiangmin Li, and Ruifeng Liu, and Huanju Tang, and Meilin Jin, and Huanchun Chen, and Ping Qian
February 2016, Research in veterinary science,
Xiangmin Li, and Ruifeng Liu, and Huanju Tang, and Meilin Jin, and Huanchun Chen, and Ping Qian
September 2003, Vaccine,
Xiangmin Li, and Ruifeng Liu, and Huanju Tang, and Meilin Jin, and Huanchun Chen, and Ping Qian
June 2013, Research in veterinary science,
Xiangmin Li, and Ruifeng Liu, and Huanju Tang, and Meilin Jin, and Huanchun Chen, and Ping Qian
July 2001, The Journal of general virology,
Xiangmin Li, and Ruifeng Liu, and Huanju Tang, and Meilin Jin, and Huanchun Chen, and Ping Qian
April 2014, The Journal of general virology,
Xiangmin Li, and Ruifeng Liu, and Huanju Tang, and Meilin Jin, and Huanchun Chen, and Ping Qian
April 2000, Vaccine,
Xiangmin Li, and Ruifeng Liu, and Huanju Tang, and Meilin Jin, and Huanchun Chen, and Ping Qian
March 1999, The Journal of general virology,
Copied contents to your clipboard!