Mapping DNase-I hypersensitive sites on human isochores. 2008

Miriam Di Filippo, and Giorgio Bernardi
Laboratory of Molecular Evolution, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.

Mapping DNase-I hypersensitive sites (HS) was used in the past to identify regulatory elements of specific genes. More recently, thousands of HS were identified in the human genome by using high-throughput methods. These approaches showed a general enrichment of HS near or within known genes, within CpG islands, within human-mouse conserved regions and in GC-rich regions of the genome. Here we show that HS: (i) are characterized by a much higher GC level (approximately 56%) than the average GC level of the human genome (approximately 41%); (ii) are overwhelmingly located in the GC-richest compartment of the genome, which is predominantly associated with an open chromatin structure; (iii) and are slightly more and slightly less frequent than genes, respectively, in the gene-rich and in the gene-poor isochore families.

UI MeSH Term Description Entries
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D015894 Genome, Human The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs. Human Genome,Genomes, Human,Human Genomes
D020862 GC Rich Sequence A nucleic acid sequence that contains an above average number of GUANINE and CYTOSINE bases. GC Rich Region,GC Rich Regions,GC Rich Sequences,Region, GC Rich,Regions, GC Rich,Sequence, GC Rich,Sequences, GC Rich
D023281 Genomics The systematic study of the complete DNA sequences (GENOME) of organisms. Included is construction of complete genetic, physical, and transcript maps, and the analysis of this structural genomic information on a global scale such as in GENOME WIDE ASSOCIATION STUDIES. Functional Genomics,Structural Genomics,Comparative Genomics,Genomics, Comparative,Genomics, Functional,Genomics, Structural
D032085 Isochores Large regions of the GENOME that contain local similarities in BASE COMPOSITION. Isochore

Related Publications

Miriam Di Filippo, and Giorgio Bernardi
June 2006, CSH protocols,
Miriam Di Filippo, and Giorgio Bernardi
January 2015, Methods in molecular biology (Clifton, N.J.),
Miriam Di Filippo, and Giorgio Bernardi
January 2018, Methods in molecular biology (Clifton, N.J.),
Miriam Di Filippo, and Giorgio Bernardi
March 2007, Plant & cell physiology,
Miriam Di Filippo, and Giorgio Bernardi
January 2023, Frontiers in genetics,
Miriam Di Filippo, and Giorgio Bernardi
June 1985, Molecular and cellular biology,
Miriam Di Filippo, and Giorgio Bernardi
August 2020, Nature,
Miriam Di Filippo, and Giorgio Bernardi
December 2018, BMC genomics,
Copied contents to your clipboard!