Regulation of protein synthesis in reticulocyte lysates: phosphorylation of methionyl-tRNAf binding factor by protein kinase activity of translational inhibitor isolated from hemedeficient lysates. 1976

D Levin, and R S Ranu, and V Ernst, and I M London

A previous study demonstrated that the translational inhibitor from lysates of heme-deficient rabbit reticulocytes is associated with a protein kinase activity. Chromatography of this inhibitor preparation on phosphocellulose yields two distinct protein kinase activities, PC1 and PC2. PC1, which consitutes about 90% of the activity in the unresolved preparation, does not inhibit protein synthesis in lysates, but actively phosporylates calf thymus histone II in a 3':5'-cyclic AMP-denpendent reaction. PC2 contains the translational inhibitor, phosphorylates histone poorly, and is not cyclic AMP-dependent. While [gamma-32P]ATP as the phosphate donor, the two kinase fractions were analyzed with the putative substrates, salt-washed 40S ribosomal subunits, and the initiation factor that mediates the binding of Met-tRNAf to the 40S subunit. PC1 is inactive with the initiation factor, but phosphorylates 40S subunits at a single major site that migrates as a 31,000-dalton band in sodium dodecyl sulfate-acrylamide gels; phosphorylation requires cyclic AMP. Similar phosphorylation of the reticulocyte 40S site (31,000 daltons) can be demonstrated with other cyclic AMP-dependent kinases from reticulocytes, rat liver, and bovine heart muscle. PC2 phosphorylates the small subunit (38,000 daltons) but not the large subunit(s) of the initiation factor; the reaction does not require cyclic AMP. PC2 does not phosphorylate 40S subunits. In the presence of 40S subunits, the initiation factor appears to be rapidly bound in a manner that effectively blocks phosphorylation of the initiation factor by PC2; under the same conditions phosphorylation of the 40S subunit by PC1 is not affected. The initiation factor has been shown to reverse the inhibitions of protein chain initiation induced in lysates by heme deficiency, double-stranded RNA, oxidized glutathione, or the purified translational inhibitor. The observation that the Met-tRNAf binding factor is phosphorylated by PC2 supports the hypothesis that this initiation factor is a target for the action of the translational inhibitor activated in heme deficiency.

UI MeSH Term Description Entries
D010442 Peptide Chain Initiation, Translational A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis. Chain Initiation, Peptide, Translational,Protein Biosynthesis Initiation,Protein Chain Initiation, Translational,Protein Translation Initiation,Translation Initiation, Genetic,Translation Initiation, Protein,Translational Initiation, Protein,Translational Peptide Chain Initiation,Biosynthesis Initiation, Protein,Genetic Translation Initiation,Initiation, Genetic Translation,Initiation, Protein Biosynthesis,Initiation, Protein Translation,Initiation, Protein Translational,Protein Translational Initiation
D010448 Peptide Initiation Factors Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION. Initiation Factors,Initiation Factor,Factors, Peptide Initiation,Initiation Factors, Peptide
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D005914 Globins A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure. Globin
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal

Related Publications

D Levin, and R S Ranu, and V Ernst, and I M London
August 1978, Proceedings of the National Academy of Sciences of the United States of America,
D Levin, and R S Ranu, and V Ernst, and I M London
November 1989, FEBS letters,
D Levin, and R S Ranu, and V Ernst, and I M London
April 1982, Proceedings of the National Academy of Sciences of the United States of America,
D Levin, and R S Ranu, and V Ernst, and I M London
February 1994, The Journal of biological chemistry,
D Levin, and R S Ranu, and V Ernst, and I M London
December 1982, Biochemical and biophysical research communications,
D Levin, and R S Ranu, and V Ernst, and I M London
February 1979, Biochemical and biophysical research communications,
D Levin, and R S Ranu, and V Ernst, and I M London
November 1988, Biochemical and biophysical research communications,
Copied contents to your clipboard!