Voltage-dependent outer hair cell stereocilia stiffness at acoustic frequencies. 2008

Ming Zhang, and James G Surles
Department of Speech Language and Hearing Sciences, Texas Tech University - Health Sciences Center, Lubbock, Texas 79430, USA. Ming.zhang@ttuhsc.edu

The aim of this report is to show the effects of voltage changes on stereocilia stiffness in mammalian outer hair cells (OHCs). With the OHC cuticular plate anchored at a microchamber tip, step voltage commands drove an OHC inside the microchamber to move freely while stereocilia were oscillated at 510 Hz by a constant fluid-jet force. With basolateral OHC depolarized and shortened, the amplitude of stereocilia motion was increased, suggesting a decrease in stereocilia stiffness. Such a decrease in stiffness may serve as an important adjusting factor inside the cochlear amplifying loop.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D004710 Endolymph The lymph fluid found in the membranous labyrinth of the ear. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Endolymphs
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000162 Acoustics The branch of physics that deals with sound and sound waves. In medicine it is often applied in procedures in speech and hearing studies. With regard to the environment, it refers to the characteristics of a room, auditorium, theatre, building, etc. that determines the audibility or fidelity of sounds in it. (From Random House Unabridged Dictionary, 2d ed) Acoustic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018072 Hair Cells, Auditory, Outer Sensory cells of organ of Corti. In mammals, they are usually arranged in three or four rows, and away from the core of spongy bone (the modiolus), lateral to the INNER AUDITORY HAIR CELLS and other supporting structures. Their cell bodies and STEREOCILIA increase in length from the cochlear base toward the apex and laterally across the rows, allowing differential responses to various frequencies of sound. Auditory Hair Cell, Outer,Auditory Hair Cells, Outer,Cochlear Outer Hair Cell,Cochlear Outer Hair Cells,Hair Cell, Auditory, Outer,Hair Cells, Auditory, Outer Inner,Outer Auditory Hair Cell,Outer Auditory Hair Cells,Outer Hair Cells,Hair Cells, Outer

Related Publications

Ming Zhang, and James G Surles
July 1999, Proceedings of the National Academy of Sciences of the United States of America,
Ming Zhang, and James G Surles
August 2000, Journal of the Association for Research in Otolaryngology : JARO,
Ming Zhang, and James G Surles
January 2012, Nature communications,
Ming Zhang, and James G Surles
December 2020, Communications biology,
Ming Zhang, and James G Surles
January 1998, Journal of neurocytology,
Ming Zhang, and James G Surles
October 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Ming Zhang, and James G Surles
January 2003, ORL; journal for oto-rhino-laryngology and its related specialties,
Ming Zhang, and James G Surles
September 2015, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!