The cytochrome P450 metabolic pathway of arachidonic acid in the cornea. 1991

M L Schwartzman, and K L Davis, and M Nishimura, and N G Abraham, and R C Murphy
Department of Pharmacology, New York Medical College, Valhalla.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003315 Cornea The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed) Corneas
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005123 Eye The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light. Eyes
D006893 Hydroxyeicosatetraenoic Acids Eicosatetraenoic acids substituted in any position by one or more hydroxy groups. They are important intermediates in a series of biosynthetic processes leading from arachidonic acid to a number of biologically active compounds such as prostaglandins, thromboxanes, and leukotrienes. HETE,Acids, Hydroxyeicosatetraenoic
D000090762 Cytochrome P-450 CYP2J2 A cytochrome P450 enzyme involved in oxidizing POLYUNSATURATED FATTY ACIDS (PUFA) to PUFA epoxides which function as potent lipid mediators. This enzyme, encoded by CYP2J2 gene, metabolizes ARACHIDONIC ACID to epoxyeicosatrienoic acids (EETs) which produce biological effects including VASODILATION. Arachidonate Epoxygenase,Arachidonic Acid Epoxygenase,Cytochrome P-450 Arachidonate Oxygenase,Cytochrome P-450 Epoxygenase,NADPH-Dependent Arachidonic Acid Epoxygenase,CYP2J2,Acid Epoxygenase, Arachidonic,Cytochrome P 450 Arachidonate Oxygenase,Cytochrome P 450 CYP2J2,Epoxygenase, Arachidonate,Epoxygenase, Arachidonic Acid,NADPH Dependent Arachidonic Acid Epoxygenase
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M L Schwartzman, and K L Davis, and M Nishimura, and N G Abraham, and R C Murphy
April 2009, Journal of lipid research,
M L Schwartzman, and K L Davis, and M Nishimura, and N G Abraham, and R C Murphy
May 1995, The Journal of clinical investigation,
M L Schwartzman, and K L Davis, and M Nishimura, and N G Abraham, and R C Murphy
August 2011, Sheng li ke xue jin zhan [Progress in physiology],
M L Schwartzman, and K L Davis, and M Nishimura, and N G Abraham, and R C Murphy
June 1996, Archives of biochemistry and biophysics,
M L Schwartzman, and K L Davis, and M Nishimura, and N G Abraham, and R C Murphy
July 1999, Biochemistry. Biokhimiia,
M L Schwartzman, and K L Davis, and M Nishimura, and N G Abraham, and R C Murphy
June 2002, Current opinion in lipidology,
M L Schwartzman, and K L Davis, and M Nishimura, and N G Abraham, and R C Murphy
December 2019, Prostaglandins & other lipid mediators,
M L Schwartzman, and K L Davis, and M Nishimura, and N G Abraham, and R C Murphy
January 1987, Agents and actions. Supplements,
M L Schwartzman, and K L Davis, and M Nishimura, and N G Abraham, and R C Murphy
October 1997, Prostaglandins,
M L Schwartzman, and K L Davis, and M Nishimura, and N G Abraham, and R C Murphy
January 1989, Advances in experimental medicine and biology,
Copied contents to your clipboard!