Translational control of transposition activity of the bacterial insertion sequence IS1. 1991

J M Escoubas, and M F Prère, and O Fayet, and I Salvignol, and D Galas, and D Zerbib, and M Chandler
Centre de Recherche de Biochimie et Génétique Cellulaire du CNRS, Toulouse, France.

The experiments reported here provide strong evidence indicating that the transposition frequency of the bacterial insertion sequence IS1 is determined principally by two IS1-specified proteins. The first, InsA, was previously shown to bind to the ends of the element and to act as a repressor. We present both physical and genetic evidence which reveals that the second, the InsAB' transposase, is a fusion of InsA with the product of a downstream reading frame, InsB'. Synthesis of this protein occurs by a -1 frameshift between the insA and insB' frames. It requires the presence of an intact retroviral-like frameshift signal composed of an A6C motif and a downstream region able to form several alternative secondary structures. In vivo studies show that IS1 transposition activity depends on the relative rather than on the absolute levels of InsA and InsAB'. The ratio is determined primarily at the translational level by frameshifting and appears to be relatively insensitive to large variations in levels of transcription. This novel homeostatic control could therefore protect IS1 from activation as a consequence of insertion into active transcription units.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base

Related Publications

J M Escoubas, and M F Prère, and O Fayet, and I Salvignol, and D Galas, and D Zerbib, and M Chandler
May 1980, Proceedings of the National Academy of Sciences of the United States of America,
J M Escoubas, and M F Prère, and O Fayet, and I Salvignol, and D Galas, and D Zerbib, and M Chandler
March 1990, Gene,
J M Escoubas, and M F Prère, and O Fayet, and I Salvignol, and D Galas, and D Zerbib, and M Chandler
January 1979, Cold Spring Harbor symposia on quantitative biology,
J M Escoubas, and M F Prère, and O Fayet, and I Salvignol, and D Galas, and D Zerbib, and M Chandler
July 1991, Trends in genetics : TIG,
J M Escoubas, and M F Prère, and O Fayet, and I Salvignol, and D Galas, and D Zerbib, and M Chandler
June 2010, The Journal of general and applied microbiology,
J M Escoubas, and M F Prère, and O Fayet, and I Salvignol, and D Galas, and D Zerbib, and M Chandler
January 1984, Cold Spring Harbor symposia on quantitative biology,
J M Escoubas, and M F Prère, and O Fayet, and I Salvignol, and D Galas, and D Zerbib, and M Chandler
February 1994, Journal of molecular biology,
J M Escoubas, and M F Prère, and O Fayet, and I Salvignol, and D Galas, and D Zerbib, and M Chandler
May 2009, The Plant journal : for cell and molecular biology,
J M Escoubas, and M F Prère, and O Fayet, and I Salvignol, and D Galas, and D Zerbib, and M Chandler
February 1978, Proceedings of the National Academy of Sciences of the United States of America,
J M Escoubas, and M F Prère, and O Fayet, and I Salvignol, and D Galas, and D Zerbib, and M Chandler
January 1985, Nature,
Copied contents to your clipboard!