Cryosurgery: early ultrastructural changes in liver tissue in vivo. 2009

Nikolai N Korpan
International Institute for Cryosurgery, Department of Surgery, Rudolfinerhaus, Vienna, Austria. Nikolai.Korpan@cryosurgrey.at

BACKGROUND Experimental observations with regard to freezing in vitro cell lines and fluid systems led to the application of low temperatures to in vivo biological systems. For the first time, this report describes the cryosurgical response of liver parenchyma and the early ultrastructural cellular changes in liver tissue, i.e., cryosurgery, in vivo. METHODS Forty-eight animals were used for the experiment. The dogs were divided into four groups. In group A, the liver tissue was frozen to -80 degrees C and in group B, to -180 degrees C. Temperatures of -80 degrees C and -180 degrees C in contact with liver tissue was selected for cryosurgical exposure. For transmission electron microscopy, the specimens were taken immediately and 1 h after the finishing of the freeze-thaw cycles intraoperatively. Further, the next specimens were taken in 24 h, this time also intraoperatively. RESULTS The electronic microscopic analysis showed that, after local cryodestruction at temperatures of -80 degrees C and -180 degrees C, similar processes occurred within the liver tissue in the early postcryosurgical phase-immediately and 1 h after cryosurgical session. The hepatocytes in the center of the cryozone changed upon thawing. Ultrastructural changes in the hepatic cells, where the first signs of dystrophic processes had been noticed, were increased. CONCLUSIONS Our new insights prove on the cell level that suddenly and progressively damaged liver cells in the postcryosurgical zone lead to aseptic cryoaponecrosis and then to aseptic cryoapoptosis of vital normal tissue. The vascular capillary changes and circulatory stagnation demonstrate together with cryoaponecrosis and cryoapoptosis the anti-angiogenesis mechanisms, which are some of the main mechanisms of biological tissue injury following the low temperature exposure.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003452 Cryosurgery The use of freezing as a special surgical technique to destroy or excise tissue. Cryoablation,Cryoablations,Cryosurgeries
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D018919 Neovascularization, Physiologic The development of new BLOOD VESSELS during the restoration of BLOOD CIRCULATION during the healing process. Angiogenesis, Physiologic,Angiogenesis, Physiological,Neovascularization, Physiological,Physiologic Angiogenesis,Physiologic Neovascularization,Physiological Angiogenesis,Physiological Neovascularization
D022781 Hepatocytes The main structural component of the LIVER. They are specialized EPITHELIAL CELLS that are organized into interconnected plates called lobules. Hepatic Cells,Cell, Hepatic,Cells, Hepatic,Hepatic Cell,Hepatocyte

Related Publications

Nikolai N Korpan
January 1981, Journal of surgical oncology,
Nikolai N Korpan
July 1975, Journal of periodontal research,
Nikolai N Korpan
July 1969, Laboratory investigation; a journal of technical methods and pathology,
Nikolai N Korpan
January 1984, Gynecologic and obstetric investigation,
Nikolai N Korpan
July 1992, Journal of submicroscopic cytology and pathology,
Nikolai N Korpan
January 1963, Revista de la Facultad de Ciencias Medicas de Cordoba,
Nikolai N Korpan
April 1972, Helvetica medica acta,
Nikolai N Korpan
November 1984, Klinicheskaia khirurgiia,
Nikolai N Korpan
January 1991, Polski tygodnik lekarski (Warsaw, Poland : 1960),
Copied contents to your clipboard!