Theta, a new class of glutathione transferases purified from rat and man. 1991

D J Meyer, and B Coles, and S E Pemble, and K S Gilmore, and G M Fraser, and B Ketterer
University College and Middlesex School of Medicine, Department of Biochemistry, London, U.K.

Glutathione transferases (GSTs) of a novel class, which it is proposed to term Theta, were purified from rat and human liver. Two, named GST 5-5 and GST 12-12, were obtained from the rat, and one, named GST theta, was from the human. Unlike other mammalian GSTs they lack activity towards 1-chloro-2,4-dinitrobenzene and are not retained by GSH affinity matrices. Only GST 5-5 retains full activity during purification, and its activities towards the substrates 1,2-epoxy-3-(p-nitrophenoxy)propane, p-nitrobenzyl chloride, p-nitrophenethyl bromide, cumene hydroperoxide, dichloromethane and DNA hydroperoxide are 185, 86, 67, 42, 11 and 0.03 mumol/min per mg of protein respectively. Earlier preparations of GST 5-5 or GST E were probably a mixture of GST 5-5 and GST 12-12, which was largely inactive, and may also have been contaminated by less than 1% with another GSH peroxidase of far greater activity. Partial analysis of primary structure shows that subunits 5, 12 and theta are related to each other, particularly at the N-terminus, where 25 of 27 residues are identical, but have little relationship to the Alpha, Mu and Pi classes of mammalian GSTs. They do, however, show some relatedness to subunit I of Drosophila melanogaster [Toung, Hsieh & Tu (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 31-35] and the dichloromethane dehalogenase of Methylobacterium DM4 [La Roche & Leisinger (1990) J. Bacteriol, 172, 164-171].

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione

Related Publications

D J Meyer, and B Coles, and S E Pemble, and K S Gilmore, and G M Fraser, and B Ketterer
January 1999, Chemico-biological interactions,
D J Meyer, and B Coles, and S E Pemble, and K S Gilmore, and G M Fraser, and B Ketterer
May 1976, Biochemical and biophysical research communications,
D J Meyer, and B Coles, and S E Pemble, and K S Gilmore, and G M Fraser, and B Ketterer
April 1996, Protein engineering,
D J Meyer, and B Coles, and S E Pemble, and K S Gilmore, and G M Fraser, and B Ketterer
November 1992, The Biochemical journal,
D J Meyer, and B Coles, and S E Pemble, and K S Gilmore, and G M Fraser, and B Ketterer
November 1997, Biochemical Society transactions,
D J Meyer, and B Coles, and S E Pemble, and K S Gilmore, and G M Fraser, and B Ketterer
July 1989, The Biochemical journal,
D J Meyer, and B Coles, and S E Pemble, and K S Gilmore, and G M Fraser, and B Ketterer
August 1996, The Biochemical journal,
D J Meyer, and B Coles, and S E Pemble, and K S Gilmore, and G M Fraser, and B Ketterer
March 1990, The Biochemical journal,
D J Meyer, and B Coles, and S E Pemble, and K S Gilmore, and G M Fraser, and B Ketterer
June 1998, Archives of biochemistry and biophysics,
D J Meyer, and B Coles, and S E Pemble, and K S Gilmore, and G M Fraser, and B Ketterer
May 2011, Drug metabolism reviews,
Copied contents to your clipboard!