Identification of the major protein phosphatases in mammalian cardiac muscle which dephosphorylate phospholamban. 1991

L K MacDougall, and L R Jones, and P Cohen
Department of Biochemistry, University of Dundee, Scotland.

The protein phosphatases which dephosphorylate native, sarcoplasmic reticulum (SR)-associated phospholamban were studied in cardiac muscle extracts and in a Triton fraction prepared by detergent extraction of myofibrils, the latter fraction containing 70-80% of the SR-associated proteins present in the tissue. At physiological concentrations of free Mg2+ (1 mM), protein phosphatase 1 (PP1) accounted for approximately 70% of the total phospholamban phosphatase activity in these fractions towards either Ser-16 (the residue labelled by cAMP-dependent protein kinase, PK-A) or Thr-17 (the residue phosphorylated by an SR-associated Ca2+/calmodulin-dependent protein kinase). Protein phosphatase 2A (PP2A) and protein phosphatase 2C (PP2C) accounted for the remainder of the activity. A major form of cardiac PP1, present in comparable amounts in both the extract and Triton fraction, was similar, if not identical, to skeletal muscle protein phosphatase 1G (PP1G), which is composed of the PP1 catalytic (C) subunit complexed to a G subunit of approximately 160 kDa, responsible for targeting PP1 to both the SR and glycogen particles of skeletal muscle. This conclusion was based on immunoblotting experiments using antibody to the G subunit, ability to bind to glycogen and the release of PP1 activity from glycogen upon incubation with PK-A and MgATP. PP1 accounted for approximately 90% of the phospholamban (Ser-16 or Thr-17) phosphatase activity in the material sedimented by centrifugation at 45,000 x g, a fraction prepared from cardiac extracts which is enriched in SR membranes. The G subunit in this fraction could be solubilised by Triton X-100, but not with 0.5 M NaCl or digestion with alpha-amylase, indicating that it is bound to membranes and not to glycogen. By analogy with the situation in skeletal muscle, the PK-A catalysed phosphorylation of the G subunit, with ensuing release of the C subunit from the SR, may prevent PP1 from dephosphorylating SR-bound substrates and represent one of the mechanisms by which adrenalin increases the phosphorylation of cardiac phospholamban (Ser-16 and Thr-17) in vivo. Hearts left in situ post mortem lose 85-95% of their PP1 activity within 20-30 min. This remarkable disappearance of PP1 may partly explain why the importance of this enzyme in cardiac muscle metabolism has not been recognized previously.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011180 Postmortem Changes Physiological changes that occur in bodies after death. Adipocere,Algor Mortis,Cruor,Livor Mortis,Change, Postmortem,Changes, Postmortem,Postmortem Change
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli

Related Publications

L K MacDougall, and L R Jones, and P Cohen
December 1993, FEBS letters,
L K MacDougall, and L R Jones, and P Cohen
March 1995, The Journal of biological chemistry,
L K MacDougall, and L R Jones, and P Cohen
August 1987, Nucleic acids research,
L K MacDougall, and L R Jones, and P Cohen
March 2022, Plant physiology,
L K MacDougall, and L R Jones, and P Cohen
May 1997, The Journal of biological chemistry,
L K MacDougall, and L R Jones, and P Cohen
April 2014, The Journal of biological chemistry,
L K MacDougall, and L R Jones, and P Cohen
January 2000, The Journal of biological chemistry,
L K MacDougall, and L R Jones, and P Cohen
October 1986, The Biochemical journal,
L K MacDougall, and L R Jones, and P Cohen
November 1984, European journal of biochemistry,
Copied contents to your clipboard!