Serotonin depresses the after-hyperpolarization through the inhibition of the Na+/K+ electrogenic pump in T sensory neurones of the leech. 1991

S Catarsi, and M Brunelli
Dipartimento di Fisiologia e Biochimica, Università di Pisa, Italy.

In T sensory neurones of the leech, a train of impulses elicited by intracellular electrical stimulation leads to an after-hyperpolarization of up to 30 mV, mainly due to the activation of the electrogenic Na+/K(+)-ATPase but partly to a Ca2(+)-activated K+ conductance. It was found that serotonin reversibly reduced the amplitude of this after-hyperpolarization. We investigated the mechanism of action of serotonin and found: (1) after inhibition of the Ca2(+)-activated K+ conductance with BaCl2 or CdCl2, serotonin was still able to reduce the after-hyperpolarization; (2) when penetration of T cells with microelectrodes leaking sodium was preceded by serotonin perfusion of the ganglia, the normal hyperpolarization due to the activation of the electrogenic pump was converted to a depolarization; (3) after long-lasting perfusion with K(+)-free saline solution (which inhibits the Na+/K+ pump), the application of CsCl caused repolarization by reactivating the electrogenic ATPase; serotonin slowed and reduced this repolarization; (4) serotonin potentiated the depolarization of T neurones caused by the inhibition of the Na+/K+ pump following cooling of ganglia and depressed the hyperpolarization after rewarming to room temperature. These data taken together suggest that serotonin directly inhibits the Na+/K+ electrogenic pump.

UI MeSH Term Description Entries
D007865 Leeches Annelids of the class Hirudinea. Some species, the bloodsuckers, may become temporarily parasitic upon animals, including man. Medicinal leeches (HIRUDO MEDICINALIS) have been used therapeutically for drawing blood since ancient times. Hirudinea,Hirudineas,Leeche
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

S Catarsi, and M Brunelli
May 1983, Pflugers Archiv : European journal of physiology,
S Catarsi, and M Brunelli
January 1988, Progress in clinical and biological research,
S Catarsi, and M Brunelli
September 1989, The Journal of membrane biology,
S Catarsi, and M Brunelli
August 1978, Biochimica et biophysica acta,
S Catarsi, and M Brunelli
April 1994, Journal of cellular physiology,
Copied contents to your clipboard!