Follicle dynamics and anovulation in polycystic ovary syndrome. 2008

Stephen Franks, and Jaroslav Stark, and Kate Hardy
Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. s.franks@imperial.ac.uk

BACKGROUND Polycystic ovary syndrome (PCOS) is the commonest cause of anovulatory infertility and menstrual cycle abnormalities, but the factors responsible for failure to select a dominant follicle remain unclear. METHODS Source is authors' own studies and search of the relevant literature. RESULTS Arrest of antral follicle growth is associated with an abnormal endocrine environment involving hypersecretion of luteinizing hormone and insulin (and perhaps hyperandrogenism). The net effect is secondary suppression of FSH, which leads to inhibition of maturation of otherwise healthy follicles in the cohort. There is, however, emerging evidence for an intrinsic abnormality of folliculogenesis in PCOS that affects the very earliest, gonadotrophin independent, stages of follicle development. There is an increased density of small pre-antral follicles and an increased proportion of early growing follicles. These abnormalities in anovulatory PCOS are further defined by abnormal granulosa cell proliferation and disparate growth of oocyte and surrounding granulosa cells. This suggests that the normal 'dialogue' between oocyte and granulosa cells in these early growing follicles is altered. There is evidence that abnormal, local (follicle-to-follicle) signalling of anti-Müllerian hormone may play a part in disordered folliculogenesis, but it is plausible that other local regulators that have been implicated in normal and abnormal pre-antral follicle development-such as insulin-like growth factors and sex steroids-have a role in aberrant folliculogenesis in PCOS. CONCLUSIONS Significant abnormalities in the very earliest stages of folliculogenesis may be the root cause of anovulation in PCOS.

UI MeSH Term Description Entries
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011085 Polycystic Ovary Syndrome A complex disorder characterized by infertility, HIRSUTISM; OBESITY; and various menstrual disturbances such as OLIGOMENORRHEA; AMENORRHEA; ANOVULATION. Polycystic ovary syndrome is usually associated with bilateral enlarged ovaries studded with atretic follicles, not with cysts. The term, polycystic ovary, is misleading. Stein-Leventhal Syndrome,Polycystic Ovarian Syndrome,Polycystic Ovary Syndrome 1,Sclerocystic Ovarian Degeneration,Sclerocystic Ovaries,Sclerocystic Ovary Syndrome,Ovarian Degeneration, Sclerocystic,Ovarian Syndrome, Polycystic,Ovary Syndrome, Polycystic,Ovary, Sclerocystic,Sclerocystic Ovary,Stein Leventhal Syndrome,Syndrome, Polycystic Ovary,Syndrome, Stein-Leventhal
D005260 Female Females
D006080 Ovarian Follicle An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS. Graafian Follicle,Atretic Follicle,Ovarian Follicles,Atretic Follicles,Follicle, Atretic,Follicle, Graafian,Follicle, Ovarian,Follicles, Atretic,Follicles, Graafian,Follicles, Ovarian,Graafian Follicles
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000858 Anovulation Suspension or cessation of OVULATION in animals or humans with follicle-containing ovaries (OVARIAN FOLLICLE). Depending on the etiology, OVULATION may be induced with appropriate therapy. Anovulations
D012739 Gonadal Steroid Hormones Steroid hormones produced by the GONADS. They stimulate reproductive organs, germ cell maturation, and the secondary sex characteristics in the males and the females. The major sex steroid hormones include ESTRADIOL; PROGESTERONE; and TESTOSTERONE. Gonadal Steroid Hormone,Sex Hormone,Sex Steroid Hormone,Sex Steroid Hormones,Sex Hormones,Hormone, Gonadal Steroid,Hormone, Sex,Hormone, Sex Steroid,Hormones, Gonadal Steroid,Hormones, Sex Steroid,Steroid Hormone, Gonadal,Steroid Hormone, Sex,Steroid Hormones, Gonadal,Steroid Hormones, Sex
D013002 Somatomedins Insulin-like polypeptides made by the liver and some fibroblasts and released into the blood when stimulated by SOMATOTROPIN. They cause sulfate incorporation into collagen, RNA, and DNA synthesis, which are prerequisites to cell division and growth of the organism. Sulfation Factor,Somatomedin,Factor, Sulfation

Related Publications

Stephen Franks, and Jaroslav Stark, and Kate Hardy
May 2010, Annales d'endocrinologie,
Stephen Franks, and Jaroslav Stark, and Kate Hardy
January 1995, Advances in endocrinology and metabolism,
Stephen Franks, and Jaroslav Stark, and Kate Hardy
January 1998, Steroids,
Stephen Franks, and Jaroslav Stark, and Kate Hardy
January 1998, Human reproduction update,
Stephen Franks, and Jaroslav Stark, and Kate Hardy
November 2003, Zhonghua fu chan ke za zhi,
Stephen Franks, and Jaroslav Stark, and Kate Hardy
November 2018, Human reproduction (Oxford, England),
Stephen Franks, and Jaroslav Stark, and Kate Hardy
June 2001, Current opinion in obstetrics & gynecology,
Stephen Franks, and Jaroslav Stark, and Kate Hardy
March 2000, Acta obstetricia et gynecologica Scandinavica,
Stephen Franks, and Jaroslav Stark, and Kate Hardy
June 2007, Nature clinical practice. Endocrinology & metabolism,
Stephen Franks, and Jaroslav Stark, and Kate Hardy
October 2009, Fertility and sterility,
Copied contents to your clipboard!