IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. 2008

Xavier Brochet, and Marie-Paule Lefranc, and Véronique Giudicelli
IMGT, the international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 141 rue de la Cardonille, 34396 Montpellier cedex 5, France.

IMGT/V-QUEST is the highly customized and integrated system for the standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) rearranged nucleotide sequences. IMGT/V-QUEST identifies the variable (V), diversity (D) and joining (J) genes and alleles by alignment with the germline IG and TR gene and allele sequences of the IMGT reference directory. New functionalities were added through a complete rewrite in Java. IMGT/V-QUEST analyses batches of sequences (up to 50) in a single run. IMGT/V-QUEST describes the V-REGION mutations and identifies the hot spot positions in the closest germline V gene. IMGT/V-QUEST can detect insertions and deletions in the submitted sequences by reference to the IMGT unique numbering. IMGT/V-QUEST integrates IMGT/JunctionAnalysis for a detailed analysis of the V-J and V-D-J junctions, and IMGT/Automat for a full V-J- and V-D-J-REGION annotation. IMGT/V-QUEST displays, in 'Detailed view', the results and alignments for each submitted sequence individually and, in 'Synthesis view', the alignments of the sequences that, in a given run, express the same V gene and allele. The 'Advanced parameters' allow to modify default parameters used by IMGT/V-QUEST and IMGT/JunctionAnalysis according to the users' interest. IMGT/V-QUEST is freely available for academic research at http://imgt.cines.fr.

UI MeSH Term Description Entries
D007133 Immunoglobulin Joining Region A segment of the immunoglobulin heavy chains, encoded by the IMMUNOGLOBULIN HEAVY CHAIN GENES in the J segment where, during the maturation of B-LYMPHOCYTES; the gene segment for the variable region upstream is joined to a constant region gene segment downstream. The exact position of joining of the two gene segments is variable and contributes to ANTIBODY DIVERSITY. It is distinguished from the IMMUNOGLOBULIN J CHAINS; a separate polypeptide that serves as a linkage piece in polymeric IGA or IGM. Joining Region, Ig,Immunoglobulin Joining Region Peptide Fragments,Ig Joining Region,Joining Region, Immunoglobulin
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012984 Software Sequential operating programs and data which instruct the functioning of a digital computer. Computer Programs,Computer Software,Open Source Software,Software Engineering,Software Tools,Computer Applications Software,Computer Programs and Programming,Computer Software Applications,Application, Computer Software,Applications Software, Computer,Applications Softwares, Computer,Applications, Computer Software,Computer Applications Softwares,Computer Program,Computer Software Application,Engineering, Software,Open Source Softwares,Program, Computer,Programs, Computer,Software Application, Computer,Software Applications, Computer,Software Tool,Software, Computer,Software, Computer Applications,Software, Open Source,Softwares, Computer Applications,Softwares, Open Source,Source Software, Open,Source Softwares, Open,Tool, Software,Tools, Software
D014584 User-Computer Interface The portion of an interactive computer program that issues messages to and receives commands from a user. Interface, User Computer,Virtual Systems,User Computer Interface,Interface, User-Computer,Interfaces, User Computer,Interfaces, User-Computer,System, Virtual,Systems, Virtual,User Computer Interfaces,User-Computer Interfaces,Virtual System
D015322 Gene Rearrangement, B-Lymphocyte Ordered rearrangement of B-lymphocyte variable gene regions coding for the IMMUNOGLOBULIN CHAINS, thereby contributing to antibody diversity. It occurs during the differentiation of the IMMATURE B-LYMPHOCYTES. B-Cell Gene Rearrangement,B-Lymphocyte Gene Rearrangement,Gene Rearrangement, B-Cell,B Cell Gene Rearrangement,B Lymphocyte Gene Rearrangement,B-Cell Gene Rearrangements,B-Lymphocyte Gene Rearrangements,Gene Rearrangement, B Cell,Gene Rearrangement, B Lymphocyte,Gene Rearrangements, B-Cell,Gene Rearrangements, B-Lymphocyte,Rearrangement, B-Cell Gene,Rearrangement, B-Lymphocyte Gene,Rearrangements, B-Cell Gene,Rearrangements, B-Lymphocyte Gene
D015329 Gene Rearrangement, T-Lymphocyte Ordered rearrangement of T-cell variable gene regions coding for the antigen receptors. Gene Rearrangement, T-Cell Antigen Receptor,T-Cell Gene Rearrangement,T-Lymphocyte Gene Rearrangement,Gene Rearrangement, T-Cell,Gene Rearrangement, T Cell,Gene Rearrangement, T Cell Antigen Receptor,Gene Rearrangement, T Lymphocyte,Gene Rearrangements, T-Cell,Gene Rearrangements, T-Lymphocyte,Rearrangement, T-Cell Gene,Rearrangement, T-Lymphocyte Gene,Rearrangements, T-Cell Gene,Rearrangements, T-Lymphocyte Gene,T Cell Gene Rearrangement,T Lymphocyte Gene Rearrangement,T-Cell Gene Rearrangements,T-Lymphocyte Gene Rearrangements
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations

Related Publications

Xavier Brochet, and Marie-Paule Lefranc, and Véronique Giudicelli
January 2012, Methods in molecular biology (Clifton, N.J.),
Xavier Brochet, and Marie-Paule Lefranc, and Véronique Giudicelli
June 2011, Cold Spring Harbor protocols,
Xavier Brochet, and Marie-Paule Lefranc, and Véronique Giudicelli
June 2017, BMC immunology,
Xavier Brochet, and Marie-Paule Lefranc, and Véronique Giudicelli
July 2004, Nucleic acids research,
Xavier Brochet, and Marie-Paule Lefranc, and Véronique Giudicelli
January 2016, Frontiers in immunology,
Xavier Brochet, and Marie-Paule Lefranc, and Véronique Giudicelli
June 2011, Cold Spring Harbor protocols,
Xavier Brochet, and Marie-Paule Lefranc, and Véronique Giudicelli
June 2011, Cold Spring Harbor protocols,
Xavier Brochet, and Marie-Paule Lefranc, and Véronique Giudicelli
June 2011, Cold Spring Harbor protocols,
Xavier Brochet, and Marie-Paule Lefranc, and Véronique Giudicelli
June 2011, Cold Spring Harbor protocols,
Xavier Brochet, and Marie-Paule Lefranc, and Véronique Giudicelli
January 2014, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!