Trans splicing in Oenothera mitochondria: nad1 mRNAs are edited in exon and trans-splicing group II intron sequences. 1991

B Wissinger, and W Schuster, and A Brennicke
Institut für Genbiologische Forschung, Berlin, Federal Republic of Germany.

The complete NADH dehydrogenase subunit 1 (nad1) ORF in Oenothera mitochondria is encoded by five exons. These exons are located in three distant locations of the mitochondrial genome. One genomic region encodes exon a, the second encodes exons b and c, and the third specifies exons d and e. Cis-splicing group II introns separate exons b and c and d and e, while trans-splicing reactions are required to link exons a and b and c and d. The two parts of the group II intron sequences involved in these trans-splicing events can be aligned in domain IV. Exon sequences and the maturase-related ORF in intron d/e are edited by numerous C to U alterations in the mRNA. Two RNA editing events in the trans-splicing intron a/b improve conservation of the secondary structure in the stem of domain VI. RNA editing in intron sequences may thus be required for the trans-splicing reaction.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011808 Quinone Reductases NAD(P)H:(quinone acceptor) oxidoreductases. A family that includes three enzymes which are distinguished by their sensitivity to various inhibitors. EC 1.6.99.2 (NAD(P)H DEHYDROGENASE (QUINONE);) is a flavoprotein which reduces various quinones in the presence of NADH or NADPH and is inhibited by dicoumarol. EC 1.6.99.5 (NADH dehydrogenase (quinone)) requires NADH, is inhibited by AMP and 2,4-dinitrophenol but not by dicoumarol or folic acid derivatives. EC 1.6.99.6 (NADPH dehydrogenase (quinone)) requires NADPH and is inhibited by dicoumarol and folic acid derivatives but not by 2,4-dinitrophenol. Menaquinone Reductases,Reductases, Menaquinone,Reductases, Quinone
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D004722 Endoribonucleases A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-. Endoribonuclease
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons

Related Publications

B Wissinger, and W Schuster, and A Brennicke
April 1992, The Journal of biological chemistry,
B Wissinger, and W Schuster, and A Brennicke
November 1990, Current genetics,
B Wissinger, and W Schuster, and A Brennicke
April 1987, The EMBO journal,
B Wissinger, and W Schuster, and A Brennicke
January 2014, Frontiers in plant science,
B Wissinger, and W Schuster, and A Brennicke
November 1986, Science (New York, N.Y.),
B Wissinger, and W Schuster, and A Brennicke
February 1998, Current genetics,
B Wissinger, and W Schuster, and A Brennicke
September 2008, RNA (New York, N.Y.),
B Wissinger, and W Schuster, and A Brennicke
March 1995, Molecular & general genetics : MGG,
B Wissinger, and W Schuster, and A Brennicke
June 1988, Molecular and cellular biology,
B Wissinger, and W Schuster, and A Brennicke
January 2007, Nucleic acids research,
Copied contents to your clipboard!