Central activin administration modulates corticotropin-releasing hormone and adrenocorticotropin secretion. 1991

P M Plotsky, and A Kjaer, and S W Sutton, and P E Sawchenko, and W Vale
Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California 92037.

A broad and diffuse neuronal network conveys information reflecting the state of the internal and external environment to the neurosecretory hypothalamus. Recently, we identified an inhibin-beta A- (I beta A) immunoreactive terminal field within the CRF-rich portion of the dorsomedial paraventricular nucleus which originates from a cell group in the commissural portion of the nucleus of the solitary tract (NTS). The NTS receives baroreceptor input, somatosensory input via the spinosolitary tract, and sensory information from the oral, thoracic, and abdominal cavities and, thus, is positioned to serve as a primary relay for visceral sensory inputs to neurons critical to the function of the hypothalamic-pituitary-adrenal (HPA) axis. Although these NTS cells contain multiple putative transmitters, we present evidence that activin, an inhibin-beta A dimer, plays a modulatory role in HPA axis function via facilitation of CRF release. First, intraventricular injection of activin-A (0-3 nmol), but not the related inhibin heterodimer, evoked dose-related 1.7- to 2.8-fold elevations of circulating ACTH levels in male rats. Second, analysis of hypophysial-portal plasma after bilateral paraventricular nucleus microinfusion of activin-A revealed a dose-related facilitation of CRF secretion up to 4-fold above preinjection levels which was unaccompanied by changes in arginine vasopressin levels. Finally, activin-A also enhanced CRF secretion from neonatal hypothalamic cells in primary culture with an EC50 dose of approximately 0.25 nM. Overall, these observations provide evidence of both an anatomical and a pharmacological substrate for activin-mediated central modulation of HPA axis function.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007265 Inhibins Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectively Female Inhibin,Inhibin,Inhibin-F,Inhibins, Female,Inhibins, Testicular,Ovarian Inhibin,Testicular Inhibin,Female Inhibins,Inhibin F,Inhibin, Female,Inhibin, Ovarian,Inhibin, Testicular,Testicular Inhibins
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D000324 Adrenocorticotropic Hormone An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP). ACTH,Adrenocorticotropin,Corticotropin,1-39 ACTH,ACTH (1-39),Adrenocorticotrophic Hormone,Corticotrophin,Corticotrophin (1-39),Corticotropin (1-39),Hormone, Adrenocorticotrophic,Hormone, Adrenocorticotropic

Related Publications

P M Plotsky, and A Kjaer, and S W Sutton, and P E Sawchenko, and W Vale
May 2000, Neuroscience letters,
P M Plotsky, and A Kjaer, and S W Sutton, and P E Sawchenko, and W Vale
September 1986, The Journal of clinical endocrinology and metabolism,
P M Plotsky, and A Kjaer, and S W Sutton, and P E Sawchenko, and W Vale
October 1986, Endocrinology,
P M Plotsky, and A Kjaer, and S W Sutton, and P E Sawchenko, and W Vale
November 1991, Neuroendocrinology,
P M Plotsky, and A Kjaer, and S W Sutton, and P E Sawchenko, and W Vale
January 1992, Life sciences,
P M Plotsky, and A Kjaer, and S W Sutton, and P E Sawchenko, and W Vale
November 1993, The Journal of clinical endocrinology and metabolism,
P M Plotsky, and A Kjaer, and S W Sutton, and P E Sawchenko, and W Vale
September 1991, Neuroendocrinology,
P M Plotsky, and A Kjaer, and S W Sutton, and P E Sawchenko, and W Vale
November 1989, Endocrine reviews,
P M Plotsky, and A Kjaer, and S W Sutton, and P E Sawchenko, and W Vale
January 1988, Life sciences,
P M Plotsky, and A Kjaer, and S W Sutton, and P E Sawchenko, and W Vale
September 2007, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!