Complexity measures of the central respiratory networks during wakefulness and sleep. 2008

Andrei Dragomir, and Yasemin Akay, and Aidan K Curran, and Metin Akay
Harrington Department of Bioengineering, Ira. A. Fulton School of Engineering, Arizona State University, Tempe, AZ 85287, USA.

Since sleep is known to influence respiratory activity we studied whether the sleep state would affect the complexity value of the respiratory network output. Specifically, we tested the hypothesis that the complexity values of the diaphragm EMG (EMGdia) activity would be lower during REM compared to NREM. Furthermore, since REM is primarily generated by a homogeneous population of neurons in the medulla, the possibility that REM-related respiratory output would be less complex than that of the awake state was also considered. Additionally, in order to examine the influence of neuron vulnerabilities within the rostral ventral medulla (RVM) on the complexity of the respiratory network output, we inhibited respiratory neurons in the RVM by microdialysis of GABA(A) receptor agonist muscimol. Diaphragm EMG, nuchal EMG, EEG, EOG as well as other physiological signals (tracheal pressure, blood pressure and respiratory volume) were recorded from five unanesthetized chronically instrumented intact piglets (3-10 days old). Complexity of the diaphragm EMG (EMGdia) signal during wakefulness, NREM and REM was evaluated using the approximate entropy method (ApEn). ApEn values of the EMGdia during NREM and REM sleep were found significantly (p < 0.05 and p < 0.001, respectively) lower than those of awake EMGdia after muscimol inhibition. In the absence of muscimol, only the differences between REM and wakefulness ApEn values were found to be significantly different.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001683 Biological Clocks The physiological mechanisms that govern the rhythmic occurrence of certain biochemical, physiological, and behavioral phenomena. Biological Oscillators,Oscillators, Endogenous,Pacemakers, Biological,Biologic Clock,Biologic Oscillator,Biological Pacemakers,Clock, Biologic,Clocks, Biological,Oscillator, Biologic,Oscillators, Biological,Pacemaker, Biologic,Pacemakers, Biologic,Biologic Clocks,Biologic Oscillators,Biologic Pacemaker,Biologic Pacemakers,Biological Clock,Biological Oscillator,Biological Pacemaker,Clock, Biological,Clocks, Biologic,Endogenous Oscillator,Endogenous Oscillators,Oscillator, Biological,Oscillator, Endogenous,Oscillators, Biologic,Pacemaker, Biological
D012890 Sleep A readily reversible suspension of sensorimotor interaction with the environment, usually associated with recumbency and immobility. Sleep Habits,Sleeping Habit,Sleeping Habits,Habit, Sleep,Habit, Sleeping,Habits, Sleep,Habits, Sleeping,Sleep Habit
D012895 Sleep, REM A stage of sleep characterized by rapid movements of the eye and low voltage fast pattern EEG. It is usually associated with dreaming. Fast-Wave Sleep,Paradoxical Sleep,Rapid Eye Movements,Rhombencephalic Sleep,Sleep, Fast-Wave,REM Sleep,Eye Movement, Rapid,Eye Movements, Rapid,Fast Wave Sleep,Movement, Rapid Eye,Movements, Rapid Eye,Rapid Eye Movement,Sleep, Fast Wave,Sleep, Paradoxical,Sleep, Rhombencephalic
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

Andrei Dragomir, and Yasemin Akay, and Aidan K Curran, and Metin Akay
December 1979, Neuroscience letters,
Andrei Dragomir, and Yasemin Akay, and Aidan K Curran, and Metin Akay
January 1990, Progress in clinical and biological research,
Andrei Dragomir, and Yasemin Akay, and Aidan K Curran, and Metin Akay
July 2022, Neuroscience,
Andrei Dragomir, and Yasemin Akay, and Aidan K Curran, and Metin Akay
December 2001, Respiration physiology,
Andrei Dragomir, and Yasemin Akay, and Aidan K Curran, and Metin Akay
October 2022, Human brain mapping,
Andrei Dragomir, and Yasemin Akay, and Aidan K Curran, and Metin Akay
July 1992, The European respiratory journal,
Andrei Dragomir, and Yasemin Akay, and Aidan K Curran, and Metin Akay
January 1975, Zhurnal evoliutsionnoi biokhimii i fiziologii,
Andrei Dragomir, and Yasemin Akay, and Aidan K Curran, and Metin Akay
January 1982, Electroencephalography and clinical neurophysiology. Supplement,
Andrei Dragomir, and Yasemin Akay, and Aidan K Curran, and Metin Akay
January 2011, Handbook of clinical neurology,
Andrei Dragomir, and Yasemin Akay, and Aidan K Curran, and Metin Akay
January 1998, Hormone research,
Copied contents to your clipboard!