Inhibition of apoptosis in Cryptosporidium parvum-infected intestinal epithelial cells is dependent on survivin. 2008

Jin Liu, and Shinichiro Enomoto, and Cheryl A Lancto, and Mitchell S Abrahamsen, and Mark S Rutherford
Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Ave, no. 295, St. Paul, MN 55108, USA.

Cryptosporidium parvum is an obligate intracellular protozoan capable of causing severe diarrheal disease in a wide variety of mammals, including humans. C. parvum infection has been associated with induction of apoptosis in exposed epithelial cells, and we now demonstrate that apoptosis is restricted to a subset of cells actively infected with C. parvum. Approximately 20% of the infected cells underwent apoptosis within 48 h of infection, suggesting that the majority of the infected cells are rescued from apoptosis. C. parvum infection resulted in low-level activation of multiple members of the caspase family, including caspase-2, -3, -4, -6, -8, and -9. The kinetics of caspase activation correlated with apoptosis over a 48-h time course. Pan caspase inhibitors reduced apoptosis of epithelial cells infected by C. parvum. Furthermore, C. parvum infection inhibited staurosporine-induced apoptosis and caspase-3/7 activation at 24 h and 48 h. Infection with C. parvum led to upregulation of genes encoding inhibitors of apoptosis proteins (IAPs), including c-IAP1, c-IAP2, XIAP, and survivin. Knockdown of survivin gene expression, but not that of c-IAP1, c-IAP2, or XIAP expression, increased caspase-3/7 activity as well as apoptosis of infected cells and decreased C. parvum 18S rRNA levels. These data suggest that the apoptotic response of infected intestinal epithelial cells is actively suppressed by C. parvum via upregulation of survivin, favoring parasite infection.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077022 Survivin An apoptosis inhibitory protein that contains a single baculoviral IAP repeat (BIR) domain. It associates with MICROTUBULES and functions to regulate cell proliferation as a component of the chromosome passage protein complex (CPC), performing essential roles for localization of the complex, chromosome alignment, segregation during MITOSIS and CYTOKINESIS, and assembly of the MITOTIC SPINDLE. It is expressed by fetal kidney and liver cells and highly expressed in ADENOCARCINOMA and high-grade LYMPHOMA. BIRC5 Protein,Baculoviral IAP Repeat-containing Protein 5,Baculoviral IAP Repeat containing Protein 5
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016785 Cryptosporidium parvum A species of parasitic protozoa that infects humans and most domestic mammals. Its oocysts measure five microns in diameter. These organisms exhibit alternating cycles of sexual and asexual reproduction. Cryptosporidium parvums,parvum, Cryptosporidium
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

Jin Liu, and Shinichiro Enomoto, and Cheryl A Lancto, and Mitchell S Abrahamsen, and Mark S Rutherford
March 2000, Infection and immunity,
Jin Liu, and Shinichiro Enomoto, and Cheryl A Lancto, and Mitchell S Abrahamsen, and Mark S Rutherford
April 2010, The American journal of tropical medicine and hygiene,
Jin Liu, and Shinichiro Enomoto, and Cheryl A Lancto, and Mitchell S Abrahamsen, and Mark S Rutherford
April 2021, Cellular microbiology,
Jin Liu, and Shinichiro Enomoto, and Cheryl A Lancto, and Mitchell S Abrahamsen, and Mark S Rutherford
July 1998, Infection and immunity,
Jin Liu, and Shinichiro Enomoto, and Cheryl A Lancto, and Mitchell S Abrahamsen, and Mark S Rutherford
April 2004, Advanced drug delivery reviews,
Jin Liu, and Shinichiro Enomoto, and Cheryl A Lancto, and Mitchell S Abrahamsen, and Mark S Rutherford
January 2015, PloS one,
Jin Liu, and Shinichiro Enomoto, and Cheryl A Lancto, and Mitchell S Abrahamsen, and Mark S Rutherford
December 2020, mBio,
Jin Liu, and Shinichiro Enomoto, and Cheryl A Lancto, and Mitchell S Abrahamsen, and Mark S Rutherford
April 1995, Parasitology,
Jin Liu, and Shinichiro Enomoto, and Cheryl A Lancto, and Mitchell S Abrahamsen, and Mark S Rutherford
September 2003, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy,
Jin Liu, and Shinichiro Enomoto, and Cheryl A Lancto, and Mitchell S Abrahamsen, and Mark S Rutherford
December 1999, Microbes and infection,
Copied contents to your clipboard!