Midbrain acetylcholine and glutamate receptors modulate accumbal dopamine release. 2008

Deranda B Lester, and Anthony D Miller, and Tiffany D Pate, and Charles D Blaha
Department of Psychology, University of Memphis, Memphis, Tennessee 38152-6400, USA.

This study determined the role of ventral tegmental area acetylcholine and glutamate receptors in modulating laterodorsal tegmentum stimulation-evoked dopamine efflux in the nucleus accumbens. Rapid changes in dopamine oxidation current were measured at carbon fiber microelectrodes using fixed potential amperometry in urethane anesthetized male mice. Intraventral tegmental area infusions of the muscarinic acetylcholine receptor antagonist scopolamine, the nicotinic acetylcholine receptor antagonist mecamylamine, or the ionotropic glutamate receptor antagonist kynurenate significantly diminished dopamine efflux in the nucleus accumbens evoked by brief electrical stimulation of the laterodorsal tegmentum. These findings suggest that acetylcholine and ionotropic glutamate receptors influence rapid dopaminergic activity and thus the communication of behaviorally relevant information from ventral tegmental area dopamine cells to forebrain areas.

UI MeSH Term Description Entries
D007736 Kynurenic Acid A broad-spectrum excitatory amino acid antagonist used as a research tool. Kynurenate,Acid, Kynurenic
D008297 Male Males
D008464 Mecamylamine A nicotinic antagonist that is well absorbed from the gastrointestinal tract and crosses the blood-brain barrier. Mecamylamine has been used as a ganglionic blocker in treating hypertension, but, like most ganglionic blockers, is more often used now as a research tool.
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries

Related Publications

Deranda B Lester, and Anthony D Miller, and Tiffany D Pate, and Charles D Blaha
January 2005, Neuroscience,
Deranda B Lester, and Anthony D Miller, and Tiffany D Pate, and Charles D Blaha
September 1991, Journal of neurochemistry,
Deranda B Lester, and Anthony D Miller, and Tiffany D Pate, and Charles D Blaha
April 2023, ACS chemical neuroscience,
Deranda B Lester, and Anthony D Miller, and Tiffany D Pate, and Charles D Blaha
October 2001, The European journal of neuroscience,
Deranda B Lester, and Anthony D Miller, and Tiffany D Pate, and Charles D Blaha
November 2016, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Deranda B Lester, and Anthony D Miller, and Tiffany D Pate, and Charles D Blaha
November 1999, Journal of neuroscience research,
Deranda B Lester, and Anthony D Miller, and Tiffany D Pate, and Charles D Blaha
July 2011, Genetics,
Deranda B Lester, and Anthony D Miller, and Tiffany D Pate, and Charles D Blaha
January 2012, PloS one,
Deranda B Lester, and Anthony D Miller, and Tiffany D Pate, and Charles D Blaha
January 2007, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Deranda B Lester, and Anthony D Miller, and Tiffany D Pate, and Charles D Blaha
March 2022, The European journal of neuroscience,
Copied contents to your clipboard!