Methylglyoxal, diabetes mellitus and diabetic complications. 2008

David L Vander Jagt
Department of Biochemistry and Molecular Biology, University of New Mexico, School of Medicine, Albuquerque, New Mexico 87131, USA. dlvanderjagt@salud.unm.edu

A large literature has developed around methylglyoxal (MG) concerning its role in diabetes mellitus (DM) and in the development of diabetic complications. This is related to the observation that levels of reactive aldehydes, especially 2-oxoaldehydes such as MG, are elevated in DM. There are numerous metabolic origins of MG that are accentuated in DM. MG has effects on insulin secretion from pancreatic beta-cells and is a major precursor of advanced glycation endproducts (AGE). Consequently, MG has a role in primary DM as well in the etiology of long-term complications. There is an extensive literature concerning the enzymes involved in the metabolism of MG, especially the glyoxalase system and aldose reductase. In addition, there is a rapidly developing literature on the direct and indirect effects of MG on signaling pathways that impact DM. This review attempts to integrate this DM-associated literature related to MG.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D011765 Pyruvaldehyde An organic compound used often as a reagent in organic synthesis, as a flavoring agent, and in tanning. It has been demonstrated as an intermediate in the metabolism of acetone and its derivatives in isolated cell preparations, in various culture media, and in vivo in certain animals. Acetylformaldehyde,Methylglyoxal,Oxopropanal,Pyruvic Aldehyde,Aldehyde, Pyruvic
D003920 Diabetes Mellitus A heterogeneous group of disorders characterized by HYPERGLYCEMIA and GLUCOSE INTOLERANCE.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000447 Aldehydes Organic compounds containing a carbonyl group in the form -CHO. Aldehyde
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017127 Glycation End Products, Advanced A heterogeneous group of compounds derived from rearrangements, oxidation, and cross-linking reactions that follow from non-enzymatic glycation of amino groups in PROTEINS; LIPIDS; or NUCLEIC ACIDS. Their accumulation in vivo accelerates under hyperglycemic, oxidative, or inflammatory conditions. Heat also accelerates the formation of advanced glycation end products (AGEs) such seen with the browning of food during cooking. Advanced Glycation End Product,Advanced Glycation Endproduct,Advanced Maillard Reaction End Product,Glycated Lipids,Glycotoxins,Maillard Product,Maillard Reaction End Product,Maillard Reaction Product,Advanced Glycation End Products,Advanced Glycation Endproducts,Advanced Maillard Reaction End Products,Glycation Endproducts, Advanced,Maillard Products,Maillard Reaction End Products,Maillard Reaction Products,Glycation Endproduct, Advanced,Lipids, Glycated,Product, Maillard Reaction,Products, Maillard,Products, Maillard Reaction,Reaction Products, Maillard
D048909 Diabetes Complications Conditions or pathological processes associated with the disease of diabetes mellitus. Due to the impaired control of BLOOD GLUCOSE level in diabetic patients, pathological processes develop in numerous tissues and organs including the EYE, the KIDNEY, the BLOOD VESSELS, and the NERVE TISSUE. Complications of Diabetes Mellitus,Diabetes-Related Complications,Diabetic Complications,Diabetes Complication,Diabetes Mellitus Complication,Diabetes Mellitus Complications,Diabetes Related Complications,Diabetes-Related Complication,Diabetic Complication
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

David L Vander Jagt
March 1970, Nihon rinsho. Japanese journal of clinical medicine,
David L Vander Jagt
January 1992, Medicinski pregled,
David L Vander Jagt
February 1998, International journal of dermatology,
David L Vander Jagt
April 2015, World journal of diabetes,
David L Vander Jagt
January 2003, Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi,
David L Vander Jagt
April 1968, Naika. Internal medicine,
David L Vander Jagt
December 2003, Biochemical Society transactions,
David L Vander Jagt
January 2000, Therapeutische Umschau. Revue therapeutique,
Copied contents to your clipboard!