Interfacial catalysis by phospholipase A2: determination of the interfacial kinetic rate constants. 1991

O G Berg, and B Z Yu, and J Rogers, and M K Jain
Department of Molecular Biology, Uppsala University Biomedical Center, Sweden.

Hydrolysis of vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphomethanol (DMPM) by pig pancreatic phospholipase A2 (PLA2) occurs in a highly processive "scooting" mode, and the rate is comparable to or exceeds the rates observed with detergent-dispersed mixed micelles under optimal conditions. A complete kinetic description of the steady-state time course of the hydrolysis is developed. The analysis covers the whole Michaelis-Menten space: it emphasizes the key features of interfacial catalysis by a detailed theoretical analysis, describes the experimental protocols to determine the values of the kinetic and equilibrium constants for interfacial catalysis, and provides an interpretation of the effect of calcium, substrate, products, apparent activators, and competitive inhibitors on the reaction progress curve by a single set of rate and equilibrium parameters. In this paper, the integrated reaction progress curve was rigorously interpreted in terms of a minimal model involving the Michaelis-Menten reaction sequence in the interface: E* + S in equilibrium E*S----E*P in equilibrium E* + P, and most of the individual rate and equilibrium constants for the catalytic cycle were determined. This rigorous description of interfacial catalysis was made experimentally possible by examining the action of PLA2 in the scooting mode under conditions of at most one enzyme per vesicle, where it hydrolyzed all of the substrate in the outer monolayer of vesicles without leaving the surface. Other experimentally verified constraints for this analysis include the following: all enzyme was bound to vesicles; the integrity of vesicles was maintained during the course of hydrolysis; and the substrate, enzyme, and products did not exchange between vesicles nor did they exchange across the bilayer. The mechanistic significance of the rate constants is discussed in the accompanying papers.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.

Related Publications

O G Berg, and B Z Yu, and J Rogers, and M K Jain
January 1995, Methods in enzymology,
O G Berg, and B Z Yu, and J Rogers, and M K Jain
September 1992, Biochemistry,
O G Berg, and B Z Yu, and J Rogers, and M K Jain
December 1990, Science (New York, N.Y.),
O G Berg, and B Z Yu, and J Rogers, and M K Jain
July 1991, Biochemistry,
O G Berg, and B Z Yu, and J Rogers, and M K Jain
May 1977, Proceedings of the National Academy of Sciences of the United States of America,
O G Berg, and B Z Yu, and J Rogers, and M K Jain
May 1989, Biochimica et biophysica acta,
O G Berg, and B Z Yu, and J Rogers, and M K Jain
April 1989, Biochimica et biophysica acta,
O G Berg, and B Z Yu, and J Rogers, and M K Jain
March 1999, Angewandte Chemie (International ed. in English),
O G Berg, and B Z Yu, and J Rogers, and M K Jain
January 1979, Canadian journal of biochemistry,
Copied contents to your clipboard!