Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. 2008

Tae Joo Park, and Brian J Mitchell, and Philip B Abitua, and Chris Kintner, and John B Wallingford
Department of Molecular Cell and Developmental Biology & Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA.

The planar cell polarity (PCP) signaling system governs many aspects of polarized cell behavior. Here, we use an in vivo model of vertebrate mucociliary epithelial development to show that Dishevelled (Dvl) is essential for the apical positioning of basal bodies. We find that Dvl and Inturned mediate the activation of the Rho GTPase specifically at basal bodies, and that these three proteins together mediate the docking of basal bodies to the apical plasma membrane. Moreover, we find that this docking involves a Dvl-dependent association of basal bodies with membrane-bound vesicles and the vesicle-trafficking protein, Sec8. Once docked, basal bodies again require Dvl and Rho for the planar polarization that underlies directional beating of cilia. These results demonstrate previously undescribed functions for PCP signaling components and suggest that a common signaling apparatus governs both apical docking and planar polarization of basal bodies.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010750 Phosphoproteins Phosphoprotein
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005260 Female Females
D000072261 Dishevelled Proteins A family of proteins that are key components of the WNT SIGNALING PATHWAY, where they function downstream of FRIZZLED RECEPTORS. They contain an N-terminal dishevelled-AXIN PROTEIN (DIX) domain, which mediates oligomerization; a central PDZ DOMAIN which binds to the frizzled receptor; and a C-terminal DEP domain which facilitates binding to the CELL MEMBRANE. Dishevelled proteins have important functions in CELL DIFFERENTIATION and establishing CELL POLARITY. Dishevelled Protein,Dishevelled-1 Protein,Dishevelled-2 Protein,Dishevelled-3 Protein,Dishevelled 1 Protein,Dishevelled 2 Protein,Dishevelled 3 Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Tae Joo Park, and Brian J Mitchell, and Philip B Abitua, and Chris Kintner, and John B Wallingford
August 2014, Nature communications,
Tae Joo Park, and Brian J Mitchell, and Philip B Abitua, and Chris Kintner, and John B Wallingford
November 2008, Trends in cell biology,
Tae Joo Park, and Brian J Mitchell, and Philip B Abitua, and Chris Kintner, and John B Wallingford
June 2020, iScience,
Tae Joo Park, and Brian J Mitchell, and Philip B Abitua, and Chris Kintner, and John B Wallingford
November 1980, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Tae Joo Park, and Brian J Mitchell, and Philip B Abitua, and Chris Kintner, and John B Wallingford
August 2015, Oncotarget,
Tae Joo Park, and Brian J Mitchell, and Philip B Abitua, and Chris Kintner, and John B Wallingford
January 1999, The Histochemical journal,
Tae Joo Park, and Brian J Mitchell, and Philip B Abitua, and Chris Kintner, and John B Wallingford
July 1995, Cell,
Tae Joo Park, and Brian J Mitchell, and Philip B Abitua, and Chris Kintner, and John B Wallingford
March 2009, Nature cell biology,
Tae Joo Park, and Brian J Mitchell, and Philip B Abitua, and Chris Kintner, and John B Wallingford
January 2022, Frontiers in bioengineering and biotechnology,
Tae Joo Park, and Brian J Mitchell, and Philip B Abitua, and Chris Kintner, and John B Wallingford
January 2008, Nature genetics,
Copied contents to your clipboard!