Action of dexmedetomidine on the substantia gelatinosa neurons of the rat spinal cord. 2008

Hideaki Ishii, and Tatsuro Kohno, and Tomohiro Yamakura, and Miho Ikoma, and Hiroshi Baba
Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Niigata 951-8510, Japan.

Dexmedetomidine is a highly specific, potent and selective alpha(2)-adrenoceptor agonist. Although intrathecal and epidural administration of dexmedetomidine has been found to produce analgesia, whether this analgesia results from an effect on spinal cord substantia gelatinosa (SG) neurons remains unclear. Here, we investigated the effects of dexmedetomidine on postsynaptic transmission in SG neurons of rat spinal cord slices using the whole-cell patch-clamp technique. In 92% of the SG neurons examined (n = 84), bath-applied dexmedetomidine induced outward currents at -70 mV in a concentration-dependent manner, with the value of effective concentration producing a half-maximal response (0.62 microM). The outward currents induced by dexmedetomidine were suppressed by the alpha(2)-adrenoceptor antagonist yohimbine, but not by prazosin, an alpha(1)-, alpha(2B)- and alpha(2C)-adrenoceptor antagonist. Moreover, the dexmedetomidine-induced currents were partially suppressed by the alpha(2C)-adrenoceptor antagonist JP-1302, while simultaneous application of JP-1302 and the alpha(2A)-adrenoceptor antagonist BRL44408 abolished the current completely. The action of dexmedetomidine was mimicked by the alpha(2A)-adrenoceptor agonist oxymetazoline. Plots of the current-voltage relationship revealed a reversal potential at around -86 mV. Dexmedetomidine-induced currents were blocked by the addition of GDP-beta-S [guanosine-5'-O-(2-thiodiphosphate)] or Cs+ to the pipette solution. These findings suggest that dexmedetomidine hyperpolarizes the membrane potentials of SG neurons by G-protein-mediated activation of K+ channels through alpha(2A)- and alpha(2C)-adrenoceptors. This action of dexmedetomidine might contribute, at least in part, to its antinociceptive action in the spinal cord.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013376 Substantia Gelatinosa Gelatinous-appearing material in the dorsal horn of the spinal cord, consisting chiefly of Golgi type II neurons and some larger nerve cells. Lamina 2,Lamina II,Substantia Gelatinosa of Rolando,Gelatinosa, Substantia,Gelatinosas, Substantia,Rolando Substantia Gelatinosa,Substantia Gelatinosas
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Hideaki Ishii, and Tatsuro Kohno, and Tomohiro Yamakura, and Miho Ikoma, and Hiroshi Baba
February 2005, Anesthesiology,
Hideaki Ishii, and Tatsuro Kohno, and Tomohiro Yamakura, and Miho Ikoma, and Hiroshi Baba
November 2003, British journal of pharmacology,
Hideaki Ishii, and Tatsuro Kohno, and Tomohiro Yamakura, and Miho Ikoma, and Hiroshi Baba
January 2010, Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994),
Hideaki Ishii, and Tatsuro Kohno, and Tomohiro Yamakura, and Miho Ikoma, and Hiroshi Baba
October 2015, Neuroscience letters,
Hideaki Ishii, and Tatsuro Kohno, and Tomohiro Yamakura, and Miho Ikoma, and Hiroshi Baba
January 1990, Experimental brain research,
Hideaki Ishii, and Tatsuro Kohno, and Tomohiro Yamakura, and Miho Ikoma, and Hiroshi Baba
January 2012, Neuroimmunomodulation,
Hideaki Ishii, and Tatsuro Kohno, and Tomohiro Yamakura, and Miho Ikoma, and Hiroshi Baba
January 2009, Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994),
Hideaki Ishii, and Tatsuro Kohno, and Tomohiro Yamakura, and Miho Ikoma, and Hiroshi Baba
June 1999, Brain research,
Hideaki Ishii, and Tatsuro Kohno, and Tomohiro Yamakura, and Miho Ikoma, and Hiroshi Baba
October 1975, The Anatomical record,
Hideaki Ishii, and Tatsuro Kohno, and Tomohiro Yamakura, and Miho Ikoma, and Hiroshi Baba
February 2000, Anesthesiology,
Copied contents to your clipboard!