Detection of heat-stable enterotoxin in a cholera toxin gene-positive strain of Vibrio cholerae O1. 1991

T Takeda, and Y Peina, and A Ogawa, and S Dohi, and H Abe, and G B Nair, and S C Pal
Department of Infectious Diseases Research, National Children's Medical Research Center, Tokyo, Japan.

DNA colony hybridization with a polynucleotide clonal DNA probe for heat-stable enterotoxin of Vibrio cholerae non-O1 (NAG-ST) was used to screen 197 isolates of V. cholerae O1. Under stringent hybridizing and washing conditions, one strain (GP156) reacted with the probe. The concentrated supernatant from V. cholerae O1 GP156, heated at 100 degrees C for 5 min, elicited fluid accumulation in the suckling mice and that could be completely neutralized by an anti-NAG-ST monoclonal antibody (mAb2F). The preparation from V. cholerae O1 GP156 also inhibited the binding of mAb2F to NAG-ST in a competitive ELISA. V. cholerae O1 GP156 was confirmed to possess a gene encoding cholera toxin (CT). These results indicate that a heat-stable enterotoxin is produced by certain strains of CT-producing V. cholerae O1.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014734 Vibrio cholerae The etiologic agent of CHOLERA. Bacillus cholerae,Bacillus cholerae-asiaticae,Liquidivibrio cholerae,Microspira comma,Pacinia cholerae-asiaticae,Spirillum cholerae,Spirillum cholerae-asiaticae,Vibrio albensis,Vibrio cholera,Vibrio cholerae-asiaticae,Vibrio comma
D015342 DNA Probes Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections. Chromosomal Probes,DNA Hybridization Probe,DNA Probe,Gene Probes, DNA,Conserved Gene Probes,DNA Hybridization Probes,Whole Chromosomal Probes,Whole Genomic DNA Probes,Chromosomal Probes, Whole,DNA Gene Probes,Gene Probes, Conserved,Hybridization Probe, DNA,Hybridization Probes, DNA,Probe, DNA,Probe, DNA Hybridization,Probes, Chromosomal,Probes, Conserved Gene,Probes, DNA,Probes, DNA Gene,Probes, DNA Hybridization,Probes, Whole Chromosomal
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

T Takeda, and Y Peina, and A Ogawa, and S Dohi, and H Abe, and G B Nair, and S C Pal
July 1993, FEBS letters,
T Takeda, and Y Peina, and A Ogawa, and S Dohi, and H Abe, and G B Nair, and S C Pal
September 1997, FEMS microbiology letters,
T Takeda, and Y Peina, and A Ogawa, and S Dohi, and H Abe, and G B Nair, and S C Pal
March 1995, FEMS microbiology letters,
T Takeda, and Y Peina, and A Ogawa, and S Dohi, and H Abe, and G B Nair, and S C Pal
April 1986, Infection and immunity,
T Takeda, and Y Peina, and A Ogawa, and S Dohi, and H Abe, and G B Nair, and S C Pal
October 1990, Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases,
T Takeda, and Y Peina, and A Ogawa, and S Dohi, and H Abe, and G B Nair, and S C Pal
December 1990, Japanese journal of medical science & biology,
T Takeda, and Y Peina, and A Ogawa, and S Dohi, and H Abe, and G B Nair, and S C Pal
June 1996, Chinese medical journal,
T Takeda, and Y Peina, and A Ogawa, and S Dohi, and H Abe, and G B Nair, and S C Pal
September 1994, World journal of microbiology & biotechnology,
T Takeda, and Y Peina, and A Ogawa, and S Dohi, and H Abe, and G B Nair, and S C Pal
October 1990, Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases,
T Takeda, and Y Peina, and A Ogawa, and S Dohi, and H Abe, and G B Nair, and S C Pal
February 1994, Molecular and cellular probes,
Copied contents to your clipboard!