RNase I*, a form of RNase I, and mRNA degradation in Escherichia coli. 1991

V J Cannistraro, and D Kennell
Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110.

A previously unreported endoRNase present in the spheroplast fraction of Escherichia coli degraded homoribopolymers and small RNA oligonucleotides but not polymer RNA. Like the periplasmic endoRNase, RNase I, the enzyme cleaved the phosphodiester bond between any nucleotides; however, RNase I degraded polymer RNA as fast as homopolymers or oligomers. Both enzymes migrated as 27-kDa polypeptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and could not be separated by various chromatographic procedures. In rna insertion mutants, both enzymes were completely missing; the spheroplast enzyme is called RNase I*, since it must be a form of RNase I. The two forms could be distinguished by physical treatments. RNase I could be activated by Zn2+, while RNase I* was inactive in the presence of Zn2+. RNase I was inactivated very slowly at 100 degrees C over a wide pH range, while RNase I* was inactivated slowly by heat at pH 4.0 but much more rapidly as the pH was increased to 8.0. In the presence of a thiol-binding agent, the inactivation at the higher pH values was much slower. These results suggest that RNase I*, but not RNase I, has free sulfhydryl groups. RNase I* activity in the cell against a common substrate was estimated to be several times that of RNase I. All four 2',3'-phosphomonoribonucleotides were identified in the soluble pools of growing cells. Such degradative products must arise from RNase I* activity. The activity would be suited for the terminal step in mRNA degradation, the elimination of the final oligonucleotide fragments, without jeopardizing the cell RNA. An enzyme with very similar specificity was found in Saccharomyces cerevisiae, suggesting that the activity may be widespread in nature.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D012259 Ribonuclease, Pancreatic An enzyme that catalyzes the endonucleolytic cleavage of pancreatic ribonucleic acids to 3'-phosphomono- and oligonucleotides ending in cytidylic or uridylic acids with 2',3'-cyclic phosphate intermediates. EC 3.1.27.5. RNase A,Ribonuclease A,Pancreatic RNase,RNase I,Ribonuclease (Pancreatic),Ribonuclease I,Pancreatic Ribonuclease,RNase, Pancreatic
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013438 Sulfhydryl Compounds Compounds containing the -SH radical. Mercaptan,Mercapto Compounds,Sulfhydryl Compound,Thiol,Thiols,Mercaptans,Compound, Sulfhydryl,Compounds, Mercapto,Compounds, Sulfhydryl

Related Publications

V J Cannistraro, and D Kennell
April 2014, Current microbiology,
V J Cannistraro, and D Kennell
December 2001, RNA (New York, N.Y.),
V J Cannistraro, and D Kennell
May 2012, Journal of bacteriology,
V J Cannistraro, and D Kennell
March 2003, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
V J Cannistraro, and D Kennell
October 2002, Bioscience, biotechnology, and biochemistry,
V J Cannistraro, and D Kennell
December 2002, IUBMB life,
V J Cannistraro, and D Kennell
May 2006, Molecular microbiology,
V J Cannistraro, and D Kennell
November 1994, Molecular microbiology,
V J Cannistraro, and D Kennell
July 2020, ACS chemical biology,
Copied contents to your clipboard!