DNA methylation-independent regulation of p16 in epithelial cells during mouse mammary gland development. 2008

Erasmia Tsellou, and Christina Michailidi, and Agatha Pafiti, and Constantinos Troungos
Department of Biological Chemistry, School of Medicine, University of Athens, Athens, Greece.

p16 (INK4a) is a known negative regulator of the cell cycle acting up-stream of Rb to inhibit cellular growth. While the contribution of p16 to the tumorigenic process has been extensively studied, little is known about its role in the cellular differentiation process of normal cells. p16 expression in mammary gland epithelial cells and its possible mediation by DNA methylation was explored. The mammary glands from female mice (mus musculus) at distinct developmental stages (virgin, day 10 of lactation and day 3 of involution) were used. The expression pattern of p16 and the DNA methylases, DNMT1, 3a and 3b was investigated by semi-quantitative RT-PCR, in situ hybridization (ISH) and immunohistochemistry. The p16 methylation status was assesed by methylation-specific PCR (MSP). p16 was differentially expressed during distinct developmental stages and its transcriptional regulation was DNA methylation-independent, which was also corroborated by the expression pattern of the three known DNA methyltransferases (DNA MTase). The p16 expression level was elevated during involution compared to the corresponding expression level during lactation. p16 is differentially expressed during normal mammary gland development, which is not mediated by DNA methylation.

UI MeSH Term Description Entries
D007774 Lactation The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN. Lactation, Prolonged,Milk Secretion,Lactations, Prolonged,Milk Secretions,Prolonged Lactation,Prolonged Lactations
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015254 DNA Modification Methylases Enzymes that are part of the restriction-modification systems. They are responsible for producing a species-characteristic methylation pattern, on either adenine or cytosine residues, in a specific short base sequence in the host cell's own DNA. This methylated sequence will occur many times in the host-cell DNA and remain intact for the lifetime of the cell. Any DNA from another species which gains entry into a living cell and lacks the characteristic methylation pattern will be recognized by the restriction endonucleases of similar specificity and destroyed by cleavage. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. DNA Modification Methyltransferases,Modification Methylases,Methylases, DNA Modification,Methylases, Modification,Methyltransferases, DNA Modification,Modification Methylases, DNA,Modification Methyltransferases, DNA
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D019175 DNA Methylation Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor. DNA Methylations,Methylation, DNA,Methylations, DNA

Related Publications

Erasmia Tsellou, and Christina Michailidi, and Agatha Pafiti, and Constantinos Troungos
June 1977, Cell differentiation,
Erasmia Tsellou, and Christina Michailidi, and Agatha Pafiti, and Constantinos Troungos
May 2001, Molecular endocrinology (Baltimore, Md.),
Erasmia Tsellou, and Christina Michailidi, and Agatha Pafiti, and Constantinos Troungos
April 1998, Molecular and cellular biology,
Erasmia Tsellou, and Christina Michailidi, and Agatha Pafiti, and Constantinos Troungos
November 1995, Molecular endocrinology (Baltimore, Md.),
Erasmia Tsellou, and Christina Michailidi, and Agatha Pafiti, and Constantinos Troungos
March 1998, Differentiation; research in biological diversity,
Erasmia Tsellou, and Christina Michailidi, and Agatha Pafiti, and Constantinos Troungos
April 2008, Biology of reproduction,
Erasmia Tsellou, and Christina Michailidi, and Agatha Pafiti, and Constantinos Troungos
June 1982, The Journal of experimental zoology,
Erasmia Tsellou, and Christina Michailidi, and Agatha Pafiti, and Constantinos Troungos
June 1973, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Erasmia Tsellou, and Christina Michailidi, and Agatha Pafiti, and Constantinos Troungos
October 2008, Proceedings of the National Academy of Sciences of the United States of America,
Erasmia Tsellou, and Christina Michailidi, and Agatha Pafiti, and Constantinos Troungos
May 2024, Biology open,
Copied contents to your clipboard!