Human longevity and aging: possible role of reactive oxygen species. 1991

R G Cutler
Gerontology Research Center, National Institute on Aging, Baltimore, Maryland 21224.

A brief overview has been given of the biological nature of human aging processes, where it has been emphasized that, in addition to the diseases of aging, there is also great economic loss as a result of human aging processes that began many years before medical costs related to aging begin to escalate. Because of the ubiquitous nature of aging, reducing the function of essentially all physiological processes, it appears that the only long-term solution to human aging problems is to decrease uniformly the aging rate of the entire body. Although the uniform decrease of aging rate has usually been considered impossible, where emphasis has consequently been placed on diseases of aging by the medically-orientated investigator, there is now at least one theoretical argument, accompanied by some experimental data, that suggests that progress can be made in achieving this goal. This progress has been based on the longevity determinant gene hypothesis predicting the existence of a relatively few key regulatory factors governing aging rate of the entire organism. If this hypothesis is not true, then indeed the prospect for significant intervention into human aging would appear impossible in the near future. Experiments have been briefly reviewed testing the longevity determinant gene hypothesis, the possibility that aging may be a result of dysdifferentiation and if aging rate is determined by mechanisms acting to stabilize the differentiated state of cells. In testing the dysdifferentiation hypothesis of aging, there is not yet much data one way or the other. It is evident, however, that changes in gene expression do occur with age, sometimes involving endogenous retroviruses or oncogenes. Other morphological evidence shows an increase with age in unusual cell type such as metaplasia cells. However, there is considerably more evidence indicating that aging may be a result of genetic instability (as it is in cancer) and that longer-lived species appear to have a more stable genetic apparatus and superior protective mechanisms against reactive oxygen species. There is a striking similarity in this model of aging and models of cancer, and much might be gained in bringing together these two fields of research. Taking all of these data together, as summarized in Table 14, it appears we may be on the right track and that mechanisms acting to protect DNA against oxidative damage may be one class of longevity determinant mechanisms. There is of course much work remaining to be done, some of which is listed in Table 15 in terms of our knowledge and our gaps of knowledge in this field.

UI MeSH Term Description Entries
D008017 Life Expectancy Based on known statistical data, the number of years which any person of a given age may reasonably be expected to live. Life Extension,Years of Potential Life Lost,Expectancies, Life,Expectancy, Life,Life Expectancies
D008136 Longevity The normal length of time of an organism's life. Length of Life,Life Span,Lifespan,Life Spans,Lifespans
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly

Related Publications

R G Cutler
January 1996, Molecular and cellular biochemistry,
R G Cutler
October 2009, Critical care medicine,
R G Cutler
October 2013, Antioxidants & redox signaling,
R G Cutler
January 2014, Postepy biochemii,
R G Cutler
September 2023, Mechanisms of ageing and development,
R G Cutler
November 2002, Journal of molecular medicine (Berlin, Germany),
R G Cutler
December 1998, Biochemistry. Biokhimiia,
R G Cutler
January 2009, Wiadomosci lekarskie (Warsaw, Poland : 1960),
R G Cutler
January 1998, Advances in experimental medicine and biology,
Copied contents to your clipboard!