[Alterations of myelin basic protein concentration in the plasma and ultrastructure in the spinal cord after continuous intrathecal ropivacaine injection in rats]. 2008

Sheng-Hui Yang, and Qu-Lian Guo, and Yi-Chun Wang
Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China. yangsh23@163.com

OBJECTIVE To explore the alterations of serum of myelin basic protein (MBP) concentration in the plasma and ultrastructure in the spinal cord after continuous intrathecal injection of different ropivacaine concentrations in rats. METHODS Ninety-six male Sprague-Dawley rats weighing 220 to approximately 280 g were randomly divided into a control group (Group N), Group R(1), R(2) and R(3) (24 rats in each group). Each group was subdivided into 4 subgroups (6 rats in each subgroup). According to the method of Yaksh's, a polyurethane microspinal catheter was inserted into the lumbar subarachnoid space in which 8 cm segment was left. Rats in each group were continuously received 40 microL of intrathecal injection of normal saline(Group N), 0.5%, 0.75%, and 1.0% ropivacaine (Group R(1),R(2),R(3)), 3 times every 1.5 hours. Blood (0.5 mL) was drawn from the femoral artery to determine serum concentrations of MBP at the detecting time T(0)(before inserted pipe)and T(1)(before the first intrathecal injection); for the subgroups, the examining time was at T(2), T(3), T(4) and T(5)(6, 12, 24 and 48 h respectively after the last time intrathecal administration). After blood was drawn, the rats in each subgroups were decapitated and the spinal cord of L(1-2) intumescentia lumbalis were immediately removed for electronic microscopic examination. RESULTS MBP levels were comparatively steady in Group N, R(1) and R(2), while there was statistical difference between Group R(3) and Group N, R(1),R(2),and R(3) (P<0.05). MBP level of Group R(3) was significantly higher at T(2),T(3),T(4) and T(5) than that at T(0)(P<0.01). The ultrastructural changes of the spinal cord in Group R(3) were pycnosis of most neurons, dilation of most rough endoplasmic reticulum, and vague structure of mitochondria and endocytoplasmic reticulum. A few neurons were completely de-generated losing the normal structure, with vacuole degeneration of crista mitochondriales or even partial loss. CONCLUSIONS The spinal cord ultrastructure is selectively vulnerable after intrathecal 1.0% ropivacaine injection, which may be one of the important pathophysiological bases for local anesthetic neurotoxicity. MBP may serve as a sensitive and specific indicator of spinal cord damage after intra-thecal administration of ropivacaine.

UI MeSH Term Description Entries
D007278 Injections, Spinal Introduction of therapeutic agents into the spinal region using a needle and syringe. Injections, Intraspinal,Injections, Intrathecal,Intraspinal Injections,Intrathecal Injections,Spinal Injections,Injection, Intraspinal,Injection, Intrathecal,Injection, Spinal,Intraspinal Injection,Intrathecal Injection,Spinal Injection
D008297 Male Males
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D004676 Myelin Basic Protein An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes. Golli-MBP1 Protein,Golli-MBP2 Protein,HOG5 Protein,HOG7 Protein,MBP1 Protein,MBP2 Protein,MBP3 Protein,MBP4 Protein,Myelin Basic Protein, 17.2 kDa Isoform,Myelin Basic Protein, 18.5 kDa Isoform,Myelin Basic Protein, 20.2 kDa Isoform,Myelin Basic Protein, 21.5 kDa Isoform,Myelin Basic Protein, Isoform 1,Myelin Basic Protein, Isoform 2,Myelin Basic Protein, Isoform 3,Myelin Basic Protein, Isoform 4,Myelin Basic Protein, Isoform 5,Myelin Basic Protein, Isoform 6,Myelin Basic Protein, Isoform 7,Golli MBP1 Protein,Golli MBP2 Protein
D000077212 Ropivacaine An anilide used as a long-acting local anesthetic. It has a differential blocking effect on sensory and motor neurons. 1-Propyl-2',6'-pipecoloxylidide,AL 381,AL-381,LEA 103,LEA-103,Naropeine,Naropin,Ropivacaine Hydrochloride,Ropivacaine Monohydrochloride,Ropivacaine Monohydrochloride, (S)-isomer,1 Propyl 2',6' pipecoloxylidide,AL381,LEA103
D000577 Amides Organic compounds containing the -CO-NH2 radical. Amides are derived from acids by replacement of -OH by -NH2 or from ammonia by the replacement of H by an acyl group. (From Grant & Hackh's Chemical Dictionary, 5th ed) Amide
D000779 Anesthetics, Local Drugs that block nerve conduction when applied locally to nerve tissue in appropriate concentrations. They act on any part of the nervous system and on every type of nerve fiber. In contact with a nerve trunk, these anesthetics can cause both sensory and motor paralysis in the innervated area. Their action is completely reversible. (From Gilman AG, et. al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed) Nearly all local anesthetics act by reducing the tendency of voltage-dependent sodium channels to activate. Anesthetics, Conduction-Blocking,Conduction-Blocking Anesthetics,Local Anesthetic,Anesthetics, Topical,Anesthetic, Local,Anesthetics, Conduction Blocking,Conduction Blocking Anesthetics,Local Anesthetics,Topical Anesthetics
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

Sheng-Hui Yang, and Qu-Lian Guo, and Yi-Chun Wang
July 1998, Acta anaesthesiologica Scandinavica,
Sheng-Hui Yang, and Qu-Lian Guo, and Yi-Chun Wang
April 2022, Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences,
Sheng-Hui Yang, and Qu-Lian Guo, and Yi-Chun Wang
March 1996, Anesthesia and analgesia,
Sheng-Hui Yang, and Qu-Lian Guo, and Yi-Chun Wang
April 2009, Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences,
Sheng-Hui Yang, and Qu-Lian Guo, and Yi-Chun Wang
October 2023, International journal of spine surgery,
Sheng-Hui Yang, and Qu-Lian Guo, and Yi-Chun Wang
March 2022, International journal of molecular sciences,
Sheng-Hui Yang, and Qu-Lian Guo, and Yi-Chun Wang
January 1979, Biokhimiia (Moscow, Russia),
Sheng-Hui Yang, and Qu-Lian Guo, and Yi-Chun Wang
October 2010, Journal of molecular neuroscience : MN,
Sheng-Hui Yang, and Qu-Lian Guo, and Yi-Chun Wang
October 2013, Xenobiotica; the fate of foreign compounds in biological systems,
Sheng-Hui Yang, and Qu-Lian Guo, and Yi-Chun Wang
January 1982, International archives of allergy and applied immunology,
Copied contents to your clipboard!