Upregulation of lipopolysaccharide-induced interleukin-10 by prostaglandin A1 in mouse peritoneal macrophages. 2008

Hyo Young Kim, and Jae Ryong Kim, and Hee Sun Kim
Department of Microbiology College of Medicine, Yeungnam University, Daegu, Korea.

The cyclopentenone prostaglandins (cyPGs) prostaglandin A1 (PGA1) and 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2) have been reported to exhibit antiinflammatory activity in activated monocytes/macrophages. However, the effects of these two cyPGs on the expression of cytokine genes may differ. In this study, we investigated the mechanism of action of PGA1 in lipopolysaccharide (LPS)-induced expression of interleukin (IL)-10 mRNA in mouse peritoneal macrophages. 15d-PGJ2 inhibited expression of LPSinduced IL-10, whereas PGA1 increased LPS-induced IL-10 expression. This synergistic effect of PGA1 on LPS-induced IL-10 expression reached a maximum as early as 2 h after simultaneous PGA1 and LPS treatment (PGA1/LPS), and did not require new protein synthesis. The synergistic effect of PGA1 was inhibited by GW9662, a specific peroxisome proliferator-activated receptor (PPAR) antagonist, and Bay-11-7082, a NF-kappaB inhibitor. The extracellular signalregulated kinases (ERK) inhibitor PD98059 increased the expression of PGA1/LPS-induced IL-10 mRNA, rather than inhibiting the IL-10 expression. Moreover, PGA1 inhibited LPS-induced ERK phosphorylation. The synergistic effect of PGA1 on LPS-induced IL-10 mRNA and protein production was inhibited by p38 inhibitor PD169316, and PGA1 increased LPS-induced p38 phosphorylation. In the case of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK), the SAPK/JNK inhibitor SP600125 did not inhibit IL-10 mRNA synthesis but inhibited the production of IL-10 protein remarkably. These results suggest that the synergistic effect of PGA1 on LPS-induced IL-10 expression is NF-kappaB-dependent and mediated by mitogen-activated protein (MAP) kinases, p38, and SAPK/ JNK signaling pathways, and also associated with the PPARgamma pathway. Our data may provide more insight into the diverse mechanisms of PGA1 effects on the expression of cytokine genes.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011454 Prostaglandins A (13E,15S)-15-Hydroxy-9-oxoprosta-10,13-dien-1-oic acid (PGA(1)); (5Z,13E,15S)-15-hydroxy-9-oxoprosta-5,10,13-trien-1-oic acid (PGA(2)); (5Z,13E,15S,17Z)-15-hydroxy-9-oxoprosta-5,10,13,17-tetraen-1-oic acid (PGA(3)). A group of naturally occurring secondary prostaglandins derived from PGE; PGA(1) and PGA(2) as well as their 19-hydroxy derivatives are found in many organs and tissues. PGA
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015230 Prostaglandin D2 The principal cyclooxygenase metabolite of arachidonic acid. It is released upon activation of mast cells and is also synthesized by alveolar macrophages. Among its many biological actions, the most important are its bronchoconstrictor, platelet-activating-factor-inhibitory, and cytotoxic effects. 11-Dehydroprostaglandin F2alpha,PGD2,11-Dehydroprostaglandin F2 alpha,11 Dehydroprostaglandin F2 alpha,11 Dehydroprostaglandin F2alpha,D2, Prostaglandin,F2 alpha, 11-Dehydroprostaglandin,F2alpha, 11-Dehydroprostaglandin,alpha, 11-Dehydroprostaglandin F2
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB

Related Publications

Hyo Young Kim, and Jae Ryong Kim, and Hee Sun Kim
June 1987, Journal of immunology (Baltimore, Md. : 1950),
Hyo Young Kim, and Jae Ryong Kim, and Hee Sun Kim
January 1999, American journal of reproductive immunology (New York, N.Y. : 1989),
Hyo Young Kim, and Jae Ryong Kim, and Hee Sun Kim
September 2002, Pathology international,
Hyo Young Kim, and Jae Ryong Kim, and Hee Sun Kim
July 1999, European journal of pharmacology,
Hyo Young Kim, and Jae Ryong Kim, and Hee Sun Kim
February 2006, Bulletin of experimental biology and medicine,
Hyo Young Kim, and Jae Ryong Kim, and Hee Sun Kim
January 2008, Molecular immunology,
Hyo Young Kim, and Jae Ryong Kim, and Hee Sun Kim
December 1994, The Journal of experimental medicine,
Hyo Young Kim, and Jae Ryong Kim, and Hee Sun Kim
June 1991, The Journal of biological chemistry,
Hyo Young Kim, and Jae Ryong Kim, and Hee Sun Kim
August 2012, Veterinary immunology and immunopathology,
Copied contents to your clipboard!