Interaction between the interstitial fluid and the extracellular matrix in confined indentation. 2008

Yiling Lu, and Wen Wang
Medical Engineering Division, School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS, UK.

The Movement of the interstitial fluid in extracellular matrices not only affects the mechanical properties of soft tissues, but also facilitates the transport of nutrients and the removal of waste products. In this study, we aim to quantify interstitial fluid movement and fluid-matrix interaction in a new loading configuration-confined tissue indentation, using a poroelastic theory. The tissue sample sits in a cylindrical chamber and loading is applied on the top central surface of the specimen by a porous indenter that is fixed on the specimen. The interaction between the solid and the fluid is examined using a finite element method under ramp and cyclic loads. Typical compression-relaxation responses of the specimen are observed in a ramp load. Under a cyclic load, the system reaches a dynamic equilibrium after a number of loading cycles. Fluid circulation, with opposite directions in the loading and unloading phases in the extracellular matrix, is observed. The most significant variation in the fluid pressure locates just beneath the indenter. Fluid pressurization arrives at equilibrium much faster than the solid matrix deformation. As the loading frequency increases, the location of the peak pressure oscillation moves closer to the indenter and the magnitude of the pressure oscillation increases. Concomitantly, the axial stress variation of the solid matrix is reduced. It is found that interstitial fluid movement helps to alleviate severe strain of the solid matrix beneath the indenter. This study quantifies the interaction between the interstitial fluid and the extracellular matrix by decomposing the loading response of the specimen into the "transient" and "dynamic equilibrium" phases. Confined indentation in this manuscript gives a better representation of some in vitro and in vivo loading configurations where the indenter covers part of the top surface of the tissue.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004548 Elasticity Resistance and recovery from distortion of shape.
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D006244 Hardness The mechanical property of material that determines its resistance to force. HARDNESS TESTS measure this property. Hardnesses
D012212 Rheology The study of the deformation and flow of matter, usually liquids or fluids, and of the plastic flow of solids. The concept covers consistency, dilatancy, liquefaction, resistance to flow, shearing, thixotrophy, and VISCOSITY. Flowmetry,Velocimetry,Velocimetries
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D014783 Viscosity The resistance that a gaseous or liquid system offers to flow when it is subjected to shear stress. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Viscosities
D016062 Porosity Condition of having pores or open spaces. This often refers to bones, bone implants, or bone cements, but can refer to the porous state of any solid substance. Porosities

Related Publications

Yiling Lu, and Wen Wang
February 2010, Animal science journal = Nihon chikusan Gakkaiho,
Yiling Lu, and Wen Wang
May 1995, Annals of the rheumatic diseases,
Yiling Lu, and Wen Wang
February 1992, British journal of rheumatology,
Yiling Lu, and Wen Wang
September 2015, Journal of biomechanical engineering,
Yiling Lu, and Wen Wang
January 1977, Journal of biomechanics,
Yiling Lu, and Wen Wang
January 1977, Society of General Physiologists series,
Yiling Lu, and Wen Wang
January 2020, Clinical hemorheology and microcirculation,
Yiling Lu, and Wen Wang
January 2012, Acta biomaterialia,
Copied contents to your clipboard!