Studies on pulmonary surfactant. Effects of cortisol administration to fetal rabbits on lung phospholipid content, composition and biosynthesis. 1976

S A Rooney, and L Gobran, and I Gross, and T S Wai-lee, and L L Nardone, and E K Motoyama

Corticosteroids are known to accelerate maturation of the fetal lung and production of surfactant. We examined the effect of cortisol administration to fetal rabbits on the phospholipid content and composition of lung lavage and lung tissue, as well as on the activities of enzymes involved in the synthesis of phosphatidylcholine and phosphatidylglycerol, the major surface-active components of surfactant. Cortisol was administered by intrauterine injection at 25 days' gestation and the fetuses were delivered at 27 days (full term, 31 days). Saline-injected fetuses, littermates of the cortisol-treated as well as non-littermates, were used as controls. The amount of phospholipid in lung lavage from the hormone-treated fetuses was almost double that of the saline-injected controls and was similar to that of an untreated fetus of more than 30 days' gestation. Similarly, the phospholipid composition of lung lavage from the hormone-treated fetuses was similar to that of an untreated fetus at a greater gestational age. These data, therefore, suggest that cortisol acts by accelerating physiological development. Cortisol administratration stimulated the activity of cholinephosphate cytidylyltransferase and lysolecithin acyltransferase to a small, but statistically significant extent. This is also consistent with an acceleration of normal development. The stimulation of lysolecithin acyltransferase is of interest, since this enzyme is believed to be involved in the synthesis of dipalmitoylglycerophosphocholine, the major surface-active species of phosphatidylcholine. Cortisol administration had no effect on the activities of pulmonary choline kinase, cholinephosphotransferase, lysophosphatidic acid acyltransferase and glycerolphosphate phosphatidyltranferase, although we have previously shown the latter enzyme to be stimulated following a longer period of exposure to the hormone. Saline injection produced some maturational effects presumably as a result of stress, which may be mediated by corticosteroids or other hormones.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008243 1-Acylglycerophosphocholine O-Acyltransferase An enzyme localized predominantly within the plasma membrane of lymphocytes. It catalyzes the transfer of long-chain fatty acids, preferentially unsaturated fatty acids, to lysophosphatides with the formation of 1,2-diacylglycero-3-phosphocholine and CoA. EC 2.3.1.23. 1-Acylglycerophosphocholine Acyltransferase,Acyl CoA Lysolecithin Acyltransferase,Lysolecithin Acyltransferase,Acyl-CoA-1-Acylglycero-3-Phosphocholine-O-Acyltransferase,Lysophosphatidylcholine Acyltransferase,Lysophosphatidylcholine-Palmitoyl CoA Acyltransferase,Lysophospholipid Acyltransferase,1 Acylglycerophosphocholine Acyltransferase,1 Acylglycerophosphocholine O Acyltransferase,Acyl CoA 1 Acylglycero 3 Phosphocholine O Acyltransferase,Acyltransferase, 1-Acylglycerophosphocholine,Acyltransferase, Lysolecithin,Acyltransferase, Lysophosphatidylcholine,Acyltransferase, Lysophosphatidylcholine-Palmitoyl CoA,Acyltransferase, Lysophospholipid,CoA Acyltransferase, Lysophosphatidylcholine-Palmitoyl,Lysophosphatidylcholine Palmitoyl CoA Acyltransferase,O-Acyltransferase, 1-Acylglycerophosphocholine
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011663 Pulmonary Surfactants Substances and drugs that lower the SURFACE TENSION of the mucoid layer lining the PULMONARY ALVEOLI. Surfactants, Pulmonary,Pulmonary Surfactant,Surfactant, Pulmonary
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002797 Choline Kinase An enzyme that is active in the first step of choline phosphoglyceride (lecithin) biosynthesis by catalyzing the phosphorylation of choline to phosphorylcholine in the presence of ATP. Ethanolamine and its methyl and ethyl derivatives can also act as acceptors. EC 2.7.1.32. ATP Choline Transphosphatase,Choline Phosphokinase,Choline Transphosphatase, ATP,Kinase, Choline,Phosphokinase, Choline,Transphosphatase, ATP Choline
D002798 Diacylglycerol Cholinephosphotransferase An enzyme that catalyzes the synthesis of phosphatidylcholines from CDPcholine and 1,2-diacylglycerols. EC 2.7.8.2. Cholinephosphotransferase,Phosphorylcholine-Glyceride Transferase,1-alkyl-2-Acetylglycerol Cholinephosphotransferase,CDP-Choline 1,2-Diglyceride Choline Phosphotransferase,CDP-Choline Cholinephosphotransferase,CDP-Diacylglycerol Synthase,Diacylglycerol-CDP Choline Phosphotransferase,PAF Phosphocholinetransferase,Phosphocholinetransferase,Phosphorylcholineglyceride Transferase,CDP Choline 1,2 Diglyceride Choline Phosphotransferase,CDP Choline Cholinephosphotransferase,CDP Diacylglycerol Synthase,Choline Phosphotransferase, Diacylglycerol-CDP,Cholinephosphotransferase, 1-alkyl-2-Acetylglycerol,Cholinephosphotransferase, CDP-Choline,Cholinephosphotransferase, Diacylglycerol,Diacylglycerol CDP Choline Phosphotransferase,Phosphocholinetransferase, PAF,Phosphorylcholine Glyceride Transferase,Phosphotransferase, Diacylglycerol-CDP Choline,Synthase, CDP-Diacylglycerol,Transferase, Phosphorylcholine-Glyceride,Transferase, Phosphorylcholineglyceride

Related Publications

S A Rooney, and L Gobran, and I Gross, and T S Wai-lee, and L L Nardone, and E K Motoyama
June 1994, The American journal of physiology,
S A Rooney, and L Gobran, and I Gross, and T S Wai-lee, and L L Nardone, and E K Motoyama
October 1991, Journal of developmental physiology,
S A Rooney, and L Gobran, and I Gross, and T S Wai-lee, and L L Nardone, and E K Motoyama
January 1992, Archivum veterinarium Polonicum,
S A Rooney, and L Gobran, and I Gross, and T S Wai-lee, and L L Nardone, and E K Motoyama
November 1975, Journal of lipid research,
S A Rooney, and L Gobran, and I Gross, and T S Wai-lee, and L L Nardone, and E K Motoyama
September 1971, Lipids,
S A Rooney, and L Gobran, and I Gross, and T S Wai-lee, and L L Nardone, and E K Motoyama
August 1983, Biochimica et biophysica acta,
S A Rooney, and L Gobran, and I Gross, and T S Wai-lee, and L L Nardone, and E K Motoyama
January 1990, Biology of the neonate,
S A Rooney, and L Gobran, and I Gross, and T S Wai-lee, and L L Nardone, and E K Motoyama
May 1978, Life sciences,
S A Rooney, and L Gobran, and I Gross, and T S Wai-lee, and L L Nardone, and E K Motoyama
April 1980, Pediatric research,
S A Rooney, and L Gobran, and I Gross, and T S Wai-lee, and L L Nardone, and E K Motoyama
May 2009, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
Copied contents to your clipboard!