ADAM10 is essential for proteolytic activation of Notch during thymocyte development. 2008

Lei Tian, and Xiaohui Wu, and Congwu Chi, and Min Han, and Tian Xu, and Yuan Zhuang
Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200433, China.

Notch signaling pathway has been shown to play essential roles in T lymphocyte development. Activation of Notch requires a sequential proteolytic cleavage, which converts Notch from the full-length membrane-bound form to a transcriptionally active intracellular fragment. Studies in Drosophila showed that Kuzbanian (Kuz) is responsible for the enzymatic cleavage of extracellular S2 site upon Notch binding to its ligand Delta. Both a disintegrin and metalloprotease (ADAM) 10 and ADAM17, members of the ADAM family metalloproteases, have been indicated as the mammalian counterpart of Kuz in activating Notch in mammals. Here, we investigated functions of ADAM10 in Notch signaling during thymocyte development. We show that conditional disruption of the Adam10 gene in mouse thymocytes results in a developmental defect similar to the phenotypes previously described for T lineage-specific disruption of Notch1. We further show that the activation of Notch1 and its downstream target genes Deltex-1 and Pre-Ta are impaired in Adam10-deficient thymocytes. Our study demonstrates a T cell intrinsic role for Adam10 in activation of Notch1 during thymocyte development.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051722 ADAM Proteins A family of membrane-anchored glycoproteins that contain a disintegrin and metalloprotease domain. They are responsible for the proteolytic cleavage of many transmembrane proteins and the release of their extracellular domain. A Disintegrin and Metalloprotease Protein,A Disintegrin and Metalloprotease Proteins,ADAM (A Disintegrin and Metalloprotease) Proteins
D051881 Receptor, Notch1 A notch receptor that interacts with a variety of ligands and regulates SIGNAL TRANSDUCTION PATHWAYS for multiple cellular processes. It is widely expressed during EMBRYOGENESIS and is essential for EMBRYONIC DEVELOPMENT. Notch1 Receptor,Notch1 Protein
D018345 Mice, Knockout Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out
D038041 Lymphopoiesis Formation of LYMPHOCYTES and PLASMA CELLS from the lymphoid stem cells which develop from the pluripotent HEMATOPOIETIC STEM CELLS in the BONE MARROW. These lymphoid stem cells differentiate into T-LYMPHOCYTES; B-LYMPHOCYTES; PLASMA CELLS; or NK-cells (KILLER CELLS, NATURAL) depending on the organ or tissues (LYMPHOID TISSUE) to which they migrate.

Related Publications

Lei Tian, and Xiaohui Wu, and Congwu Chi, and Min Han, and Tian Xu, and Yuan Zhuang
April 2000, Journal of immunology (Baltimore, Md. : 1950),
Lei Tian, and Xiaohui Wu, and Congwu Chi, and Min Han, and Tian Xu, and Yuan Zhuang
February 2011, Development (Cambridge, England),
Lei Tian, and Xiaohui Wu, and Congwu Chi, and Min Han, and Tian Xu, and Yuan Zhuang
March 2004, Immunity,
Lei Tian, and Xiaohui Wu, and Congwu Chi, and Min Han, and Tian Xu, and Yuan Zhuang
August 2006, Proceedings of the National Academy of Sciences of the United States of America,
Lei Tian, and Xiaohui Wu, and Congwu Chi, and Min Han, and Tian Xu, and Yuan Zhuang
October 2010, Seminars in immunology,
Lei Tian, and Xiaohui Wu, and Congwu Chi, and Min Han, and Tian Xu, and Yuan Zhuang
July 2016, Biochemical and biophysical research communications,
Lei Tian, and Xiaohui Wu, and Congwu Chi, and Min Han, and Tian Xu, and Yuan Zhuang
March 2007, Developmental cell,
Lei Tian, and Xiaohui Wu, and Congwu Chi, and Min Han, and Tian Xu, and Yuan Zhuang
January 2016, PloS one,
Lei Tian, and Xiaohui Wu, and Congwu Chi, and Min Han, and Tian Xu, and Yuan Zhuang
November 2002, Nature immunology,
Lei Tian, and Xiaohui Wu, and Congwu Chi, and Min Han, and Tian Xu, and Yuan Zhuang
May 2016, Cellular and molecular life sciences : CMLS,
Copied contents to your clipboard!