31P NMR studies of the arginine kinase reaction. Equilibrium constants and exchange rates at stoichiometric enzyme concentration. 1976

B D Rao, and D H Buttlaire, and M Cohn

The arginine kinase reaction, the reversible transfer of the terminal phosphoryl group of ATP to L-arginine, has been investigated by the technique of 31P NMR at catalytic and stoichiometric concentrations of the enzyme. Three of the four substrates, ATP, ADP, and P-arginine produce easily distinguishable resonances in the 31P NMR spectrum, thus permitting a determination of equilibrium constants from the integrated areas of the resonances. From the linewidths, the exchange rates between reactants and products may be evaluated. At pH 7.25 and a temperature of 12 degrees, the equilibrium constant at catalytic enzyme concentration: Keq = [MgADP] [P-arginine]/[MgATP] [L-arginine], is found to be 0.10 +/- 0.02 and that at stoichiometric enzyme concentration: K'eq = [E-MgADP] [E-P-arginine]/[E-MgATP] [E-arginine] to be 1.56 +/- 0.5. Thus, as the enzyme concentration increased, the production of P-arginine is increasingly favored. From the NMR line shapes in the presence of excess enzyme, the rate of the single step, the transfer of the phosphoryl group on the surface of the enzyme is found to be 192 +/- 15 s-1 in the forward direction, i.e. from E-MgATP, and 154 +/- 15 s-1 in the reverse direction from E-P-argine. At 12 degrees and pH 7.25, the rate of the overall reaction in the forward direction was determined from kinetic measurements to be 19 s-1, an order of magnitude slower than the rate measured by NMR. It can, therefore, be concluded that the interconversion of substrates on the surface of the enzyme is not the rate-determining step in the overal reaction. From the equilibrium constants and other known data the dissociation constant of P-arginine from its enzyme complex can be determined and is found to be 100 muM.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008121 Nephropidae Family of large marine CRUSTACEA, in the order DECAPODA. These are called clawed lobsters because they bear pincers on the first three pairs of legs. The American lobster and Cape lobster in the genus Homarus are commonly used for food. Clawed Lobsters,Homaridae,Homarus,Lobsters, Clawed,Clawed Lobster,Lobster, Clawed
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine

Related Publications

B D Rao, and D H Buttlaire, and M Cohn
July 1989, Magnetic resonance in medicine,
B D Rao, and D H Buttlaire, and M Cohn
July 1989, Magnetic resonance in medicine,
B D Rao, and D H Buttlaire, and M Cohn
December 1983, Journal of theoretical biology,
B D Rao, and D H Buttlaire, and M Cohn
January 1976, Biochemical Society transactions,
Copied contents to your clipboard!