Isolation of two genes encoding putative protein kinases regulated during Dictyostelium discoideum development. 1991

E Bürki, and C Anjard, and J C Scholder, and C D Reymond
Swiss Experimental Cancer Research Center, ISREC, Epalinges, Switzerland.

Two Dictyostelium discoideum protein kinase(PK)-encoding cDNAs (Dd PK1 and Dd PK2) have been isolated by hybridization with an oligodeoxyribonucleotide derived from a highly conserved region of eukaryotic PKs. The two nucleotide (nt) sequences encode new putative serine/threonine-specific PKs. Dd PK1 is a partial cDNA covering the entire catalytic domain. The derived amino acid (aa) sequence is about 30% identical to both cAMP-dependent protein kinase (cAPK) and protein kinase C. The Dd PK2 sequence was extended through the isolation of a genomic fragment encoding a complete putative protein. A single intron is present, as deduced from sequence comparison with the cDNA. The catalytic domain appears more closely related to the catalytic subunit of cAPK (54% sequence identity). However, our nt sequence potentially codes for a much larger protein (648 vs. about 350 aa for most cAPKs) with a N-terminal half containing long homopolymers of threonines, glutamines and asparagines. Similar repeats occur at the C terminus of Dd PK1, Dd PK1 is expressed in vegetatively growing cells and during development. Dd PK1 RNA decreases after 6 h of starvation to re-accumulate once the cells have aggregated. Dd PK2 transcripts, present at a low amount in growing cells, rise upon starvation. A switch to a shorter form of transcripts occurs between 3 and 6 h into development.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction

Related Publications

E Bürki, and C Anjard, and J C Scholder, and C D Reymond
May 1977, Cell,
E Bürki, and C Anjard, and J C Scholder, and C D Reymond
June 1987, Molecular and cellular biology,
E Bürki, and C Anjard, and J C Scholder, and C D Reymond
July 1990, Molecular and cellular biology,
E Bürki, and C Anjard, and J C Scholder, and C D Reymond
September 1995, Plasmid,
E Bürki, and C Anjard, and J C Scholder, and C D Reymond
January 1990, Molecular microbiology,
E Bürki, and C Anjard, and J C Scholder, and C D Reymond
April 1979, Biochimica et biophysica acta,
E Bürki, and C Anjard, and J C Scholder, and C D Reymond
July 2000, Biochimica et biophysica acta,
E Bürki, and C Anjard, and J C Scholder, and C D Reymond
January 1988, Developmental genetics,
Copied contents to your clipboard!