GMP prevents excitotoxicity mediated by NMDA receptor activation but not by reversal activity of glutamate transporters in rat hippocampal slices. 2008

Simone Molz, and Dal-Cim Tharine, and Helena Decker, and Carla I Tasca
Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brazil.

Glutamate is the main excitatory neurotransmitter in the mammalian nervous system and is essential for its normal functions. However, overstimulation of glutamatergic system due to hyperactivation of NMDA receptors and/or impairment of glutamate reuptake system has been implicated in many acute and chronic neurological diseases. Regulation of extracellular glutamate concentrations relies on the function of glutamate transporters which can be reversed in situations related to excitotoxicity. Guanosine-5'-monophosphate (GMP), a guanine nucleotide which displays important extracellular roles, such as trophic effects to neurons and astrocytes, behaves as antagonist of glutamate receptors and is neuroprotective in hippocampal slices against excitotoxicity or ischemic conditions. Hippocampal slices exposed to 1 or 10 mM glutamate, or 100 microM NMDA with 10 microM glycine for 1 h and evaluated after 6 or 18 h, showed reduced cell viability and DNA fragmentation, respectively. Glutamate- or NMDA-induced cell death was prevented by 50 microM MK-801, but only NMDA-induced cell damage was prevented by GMP (1 mM). Glutamate-induced cell viability impairment and glutamate-induced l-[(3)H]glutamate release were both prevented by adding DL-TBOA (10 microM). Otherwise, NMDA-induced cell viability loss was not prevented by 10 microM of DL-TBOA and NMDA did not induce l-[(3)H]glutamate release. Our results demonstrate that GMP is neuroprotective when acting selectively at NMDA receptors. Glutamate-induced hippocampal slice damage and glutamate release were blocked by glutamate transporter inhibitor, indicating that glutamate-induced toxicity also involves the reversal of glutamate uptake, which cannot be prevented by GMP.

UI MeSH Term Description Entries
D008297 Male Males
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D001928 Brain Diseases, Metabolic Acquired or inborn metabolic diseases that produce brain dysfunction or damage. These include primary (i.e., disorders intrinsic to the brain) and secondary (i.e., extracranial) metabolic conditions that adversely affect cerebral function. Central Nervous System Metabolic Disorders,Encephalopathies, Metabolic,Metabolic Disorders, Brain,Acquired Metabolic Diseases, Brain,Acquired Metabolic Diseases, Nervous System,Acquired Metabolic Encephalopathies,Brain Diseases, Metabolic, Acquired,Brain Disorders, Metabolic,Brain Disorders, Metabolic, Acquired,Brain Syndrome, Metabolic,Brain Syndrome, Metabolic, Acquired,CNS Metabolic Disorders,CNS Metabolic Disorders, Acquired,Encephalopathy, Metabolic, Acquired,Metabolic Brain Diseases,Metabolic Brain Diseases, Acquired,Metabolic Brain Syndrome,Metabolic Brain Syndrome, Acquired,Metabolic Brain Syndromes,Metabolic Brain Syndromes, Acquired,Metabolic Diseases, Acquired, Nervous System,Metabolic Disorder, Central Nervous System, Acquired,Metabolic Disorders, CNS,Metabolic Disorders, CNS, Acquired,Metabolic Disorders, Central Nervous System,Metabolic Encephalopathies,Nervous System Acquired Metabolic Diseases,Acquired Metabolic Encephalopathy,Brain Disease, Metabolic,Brain Disorder, Metabolic,Brain Metabolic Disorder,Brain Metabolic Disorders,CNS Metabolic Disorder,Encephalopathies, Acquired Metabolic,Encephalopathy, Acquired Metabolic,Encephalopathy, Metabolic,Metabolic Brain Disease,Metabolic Brain Disorder,Metabolic Brain Disorders,Metabolic Disorder, Brain,Metabolic Disorder, CNS,Metabolic Encephalopathies, Acquired,Metabolic Encephalopathy,Metabolic Encephalopathy, Acquired
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006157 Guanosine Monophosphate A guanine nucleotide containing one phosphate group esterified to the sugar moiety and found widely in nature. 5'-Guanylic Acid,Guanosine 5'-Monophosphate,5'-GMP,Guanylic Acid,5' Guanylic Acid,5'-Monophosphate, Guanosine,Acid, 5'-Guanylic,Acid, Guanylic,Guanosine 5' Monophosphate,Monophosphate, Guanosine
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid

Related Publications

Simone Molz, and Dal-Cim Tharine, and Helena Decker, and Carla I Tasca
July 1996, The European journal of neuroscience,
Simone Molz, and Dal-Cim Tharine, and Helena Decker, and Carla I Tasca
January 1993, European journal of pharmacology,
Simone Molz, and Dal-Cim Tharine, and Helena Decker, and Carla I Tasca
May 2019, International journal of molecular sciences,
Simone Molz, and Dal-Cim Tharine, and Helena Decker, and Carla I Tasca
January 2019, Frontiers in cellular neuroscience,
Simone Molz, and Dal-Cim Tharine, and Helena Decker, and Carla I Tasca
November 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Simone Molz, and Dal-Cim Tharine, and Helena Decker, and Carla I Tasca
June 2002, Journal of neurophysiology,
Simone Molz, and Dal-Cim Tharine, and Helena Decker, and Carla I Tasca
January 2005, Neurochemical research,
Simone Molz, and Dal-Cim Tharine, and Helena Decker, and Carla I Tasca
April 1993, Neuroscience letters,
Simone Molz, and Dal-Cim Tharine, and Helena Decker, and Carla I Tasca
March 2010, Neurochemistry international,
Simone Molz, and Dal-Cim Tharine, and Helena Decker, and Carla I Tasca
December 1991, Synapse (New York, N.Y.),
Copied contents to your clipboard!